cari

大数据量的处理

Jun 07, 2016 pm 03:29 PM
khususberurusan dengandatapantausoalan

最近做的项目中涉及到大数据量的问题,具体问题是:监测数字电视的信号,对传输的码流进行指标监测,每秒监测到20000个流,每个流对应着20多个指标,每秒存储一次将这20000流存储起来,需要保存24小时的数据。 这个问题研究了好几天: 一、文件写入存储:但

最近做的项目中涉及到大数据量的问题,具体问题是:监测数字电视的信号,对传输的码流进行指标监测,每秒监测到20000个流,每个流对应着20多个指标,每秒存储一次将这20000流存储起来,需要保存24小时的数据。

这个问题研究了好几天:

一、文件写入存储:但是如果将一天的17亿条记录都写入到一个文件里,没试过,相信会很慢,而且查询的时候会更慢。如果写入到多个文件,按照流ID可以将数据拆成20000个分类,同时对20000个文件执行写入操作也不现实。

二、数据库存储:文件存储的方式pass掉了之后开始考虑数据库存储

1、首先我用的Oracle进行性能测试:

将表按照流ID进列表分区,分为20000个区,然后每个分区内存储86400条数据(也就是该流从一天的第1秒到86400秒对应的指标数据),需要有索引,主键是全局索引,其余的列我又建了4个分区索引。

第一步创建6个表空间,保证每个表空间都能拓展到32GB大小(Oracle的表空间最大能拓展到32GB)

第二步要创建这个分区表:

-- Create table
create table AAA
(
  ID             number(8),
  StreamID       number(8),
  StreamType     number(1),
  FAvailability  number(5),
  Bandwidth      number(4),
  ValidBandwidth number(4),
  MDI_DF         number(5),
  MDI_MLR        number(5),
  Delay_Time     number(5),
  IPInterval     number(5),
  IPJitter       number(5),
  Time           date,
  MLT15          number(5),
  MLT24          number(5),
  MLS            number(5),
  SliceNum       number(5),
  CachedTime     number(5),
  StuckTime      number(5),
  GetSliceErr    number(5),
  RetransmitRate number(5),
  RepeatRate     number(5),
  SecondsFlag    number(5)
)
partition by list(SecondsFlag)  
(  
   partition p1 values(1) tablespace tbs_haicheng 
  
);  
第三步再为t_stream表创建19999个分区:
DECLARE
parName varchar2(100);
sql_str varchar2(500);
BEGIN
  FOR  I  IN 2..20000 LOOP
    parName:='p'||I;
    sql_str:='ALTER TABLE aaa ADD partition'||' p'||I|| ' VALUES('||I||')';
    execute immediate sql_str;
    END LOOP;
  END; 

第四步为t_stream创建4个分区索引:
-- Create/Recreate indexes 
create index LOCAL_INDEX_REPEATRATE on AAA (REPEATRATE);
create index LOCAL_INDEX_SECONDSFLAG on AAA (SECONDSFLAG);
create index LOCAL_INDEX_STREAM on AAA (STREAMID);
create index LOCAL_INDEX_TIME on AAA (TIME);

第五步创建一个表结构与t_stream相似的表:

create table a
(
  ID             number(8),
  StreamID       number(8),
  StreamType     number(1),
  FAvailability  number(5),
  Bandwidth      number(4),
  ValidBandwidth number(4),
  MDI_DF         number(5),
  MDI_MLR        number(5),
  Delay_Time     number(5),
  IPInterval     number(5),
  IPJitter       number(5),
  Time           date,
  MLT15          number(5),
  MLT24          number(5),
  MLS            number(5),
  SliceNum       number(5),
  CachedTime     number(5),
  StuckTime      number(5),
  GetSliceErr    number(5),
  RetransmitRate number(5),
  RepeatRate     number(5),
  SecondsFlag    number(5)
)
partition by list (SECONDSFLAG)
(
  partition P1 values (1)
    tablespace IPVIEW1
    pctfree 10
    initrans 1
    maxtrans 255
    storage
    (
      initial 64K
      minextents 1
      maxextents unlimited
    )
);
alter table AAA
  add constraint ID primary key (ID)
  using index 
  tablespace TBS_HAICHENG
  pctfree 10
  initrans 2
  maxtrans 255
  storage
  (
    initial 64K
    minextents 1
    maxextents unlimited
  );

第六步向表A中插入86400条数据:
declare
begin
  for i in 1..86400 loop
  insert into a
  (id, streamid, streamtype, favailability, bandwidth, validbandwidth, mdi_df, mdi_mlr, delay_time, ipinterval, ipjitter, time, mlt15, mlt24, mls, slicenum, cachedtime, stucktime, getsliceerr, retransmitrate, repeatrate)
values
  (seq_aaa.nextval, 111, 1, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, SYSDATE, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111); 
  end loop;
  end ;

第七步:向t_stream表中copy数据
declare
begin
  FOR I IN 1..20000 LOOP
  insert into aaa
         select seq_aaa.nextval, streamid, streamtype, favailability, bandwidth, validbandwidth, mdi_df, mdi_mlr, delay_time, ipinterval, ipjitter, time, mlt15, mlt24, mls, slicenum, cachedtime, stucktime, getsliceerr, retransmitrate, repeatrate,I from a;
    commit;
    END LOOP;
  end;

注意:实际上,这一部分我是将1-20000分成20份 ,开了20个线程同时执行,每个线程负责向1000个分区中copy数据(向每个分区录入86400条),这时候明白我为什么要创建表A了吧!

然后,就不管他了,玩游戏看电影去了,两天假结束,想起来去看了一眼插入到什么程度了,发现磁盘有的线程还在执行,有的线程由于表空间写满到32Gb无法再拓展而终止了。

看了一下序列已经被调用到6亿多,说明插入进去了6亿多条是数据。

首先是数据占用的空间问题,与估算的相差太多,我开始插入了上百万的数据,通过查看这上百万数据占用的空间估算出17亿数据占用的空间在180G左右,,而我准备出将近200G的磁盘空间以为足够了呢,结果差了这么多,分析下原因,最主要的一点是索引占用的空间:

我原来在预估的时候忘记了为表创建索引,以为没什么大影响,有10G空间足够索引占用了,可是事实大错特错了,通过下面的语句查看了下空间的占用情况:

1、表占用空间(0.008G   这是A表里的86400条数据占用的空间)
select segment_name, sum(bytes)/1024/1024/1024 GB from user_segments where segment_type='TABLE'  group by segment_name;
2、索引占用空间(17.24GB)
select segment_name ,sum(bytes)/1024/1024/1024 GB from user_segments where segment_type IN('INDEX PARTITION','INDEX') group by segment_name;
3、分区表TABLE PARTITION占用空间(63.5GB)
select segment_name,sum(bytes)/1024/1024/1024 GB from user_segments where segment_type='TABLE PARTITION' group by segment_name;
结果分别如下:

 

\
 

\

\

注:第三个图中的SEGMENT_NAME的值为T_STREAM 是上文创建的那个分区表。

我们看到结果发现,实际上表数据占用的空间是64GB,跟原来估算的几乎一致,多出来的部分是被索引占了,总共占用了将近100GB的空间,吓死哥了尴尬

缘何索引占用了这么多的空间?可能是我创建索引的方式不对?后续研究补充!

我们的程序采用的策略是首先将17亿条记录手动录入到数据库中,然后当监测到流指标时候对响应的数据进行update操作,也就是一般每秒执行20000个update语句,测试下性能:

 

declare
j  number ;
begin
  for i in 2000000..2020000 loop
update t_stream
   set 
       streamid = 2,
       streamtype = 2,
       favailability = 2,
       bandwidth = 2,
       validbandwidth = 2,
       mdi_df = 2,
       mdi_mlr = 2,
       delay_time = 2,
       ipinterval = 2,
       ipjitter = 2,
       time = sysdate,
       mlt15 = 2,
       mlt24 = 2,
       mls = 2,
       slicenum = 2,
       cachedtime = 2,
       stucktime = 2,
       getsliceerr = 2,
       retransmitrate = 2,
       repeatrate = 2
        where  id = i ;
  end loop;
  end ;

这种单纯以主键进行修改的时候他要进行全表扫描(所有的分区需要扫描到),效率很低,大约70s执行完,这才只是6亿数据。

所以我们要让他在执行update语句的时候尽量扫描单个分区,也就是说把那个分区字段当参数传递过来,如下语句所示:

declare
j  number ;
begin
  j:=1;
  for i in 2000000..2020000 loop
update aaa
   set 
       streamid = 2,
       streamtype = 2,
       favailability = 2,
       bandwidth = 2,
       validbandwidth = 2,
       mdi_df = 2,
       mdi_mlr = 2,
       delay_time = 2,
       ipinterval = 2,
       ipjitter = 2,
       time = sysdate,
       mlt15 = 2,
       mlt24 = 2,
       mls = 2,
       slicenum = 2,
       cachedtime = 2,
       stucktime = 2,
       getsliceerr = 2,
       retransmitrate = 2,
       repeatrate = 2
        where  id = i ;
        j:=j+1;
  end loop;
  end ;

测试这个代码块执行时间为3s,而且虽然现在是6亿数据,但是就是17亿数据执行时间也差不多是3s的,因为它扫描的永远只是20000个分区。而且我的电脑才四核处理器,服务器上24核呢。执行的肯定会比我电脑快多了吧,所以实现预定需求不成问题。

2、后来由于Oracle是收费的,不让用了,汗一个,接下来研究Mysql。

Mysql在建表以及分区的时候遇到两个问题:

问题一:建分区的时候总提示语法错误,无论怎么改都不让我创建分区,Mysql这么火的数据库不可能不支持分区啊。后来一查才知道Mysq5.0版本不支持分区,是从5.1才开始支持表的分区的尴尬,于是把我的数据库版本更换成5.5的,分区成功创建。

问题二:在Mysql上建20000个分区的过程中发现每次执行到中途就报错停止了,查询了解到Mysql的表分区数量是有限制的,每个表最多能有1024个分区。

这对我们影响不太大,大不了我就建1000个分区,每个分区存放86400*20条数据,相信每个分区百万条数据不算什么。

3、首先sqlite数据库不支持分区只好建立20000个表,由于sqlite不支持存储过程,我也没找到sqlite怎样写循环语句。但是建立20000个表 和 录入那么多的数据我们不可能一条一条的去执行写语句执行,所以需要另想办法,我的解决过程:

首先我想到可以用调用批处理文件的方式插入数据和建表:

建一个 批量建表.bat文件,文件内容如下:

@ECHO OFF 
For /L %%i in (1,1,20000) do (sqlite3.exe hc.db<createTable.bat bbb_%%i) 
pause 

createTable.bat 内容如下:

create table 1%(ID integer primary key autoincrement,
  STREAMID       NUMBER(10),
  STREAMTYPE     NUMBER(1),
  FAVAILABILITY  NUMBER(5),
  BANDWIDTH      NUMBER(4),
  VALIDBANDWIDTH NUMBER(4),
  MDIDF          NUMBER(5),
  MDIMLR         NUMBER(5),
  DELAY_TIME     NUMBER(5),
  IPINTERVAL     NUMBER(5),
  IPJITTER       NUMBER(5),
  TIME           DATE,
  MLT15          NUMBER(5),
  MLT24          NUMBER(5),
  MLS            NUMBER(5),
  SLICENUM       NUMBER(5),
  CACHEDTIME     NUMBER(5),
  STUCKTIME      NUMBER(5),
  GETSLICEERR    NUMBER(5),
  RETRANSMITRATE NUMBER(5),
  REPEATRATE     NUMBER(5),
  SECONDSFLAG    NUMBER(5),
  PART    NUMBER(5)
);

问题出现了,在执行批量建表.bat的时候提示sqlite语法错误。至今也没找到原因:

问题肯定是出现在传递的动态参数上,createTable.bat成功的接到了参数,语句在sqlite中执行不报错,放在bat里就报错。 所以第一次批量建表没成功。

那就用咱们的老本行,写JAVA程序:

需要一个驱动包:sqlitejdbc-v033-nested.jar。

代码如下:

import java.sql.*;
import org.sqlite.JDBC;
/**
 * sqlite创建数据库以及批量建表
 * @time 2014-01-07
 * @author HaiCheng
 *
 */
public class createTable {
	/**
	 * @param args
	 * @throws Exception 
	 */
	public static void main(String[] args) throws Exception {
		try{
			//1,保证SQLite数据库文件的路径首字符为小写,否则报错
			String thisPath = "e:/haicheng.db";
			String sql = "jdbc:sqlite://"+thisPath;//windows && linux都适用
			 //2,连接SQLite的JDBC
			 Class.forName("org.sqlite.JDBC"); 
			 //建立一个数据库名haicheng.db的连接,如果不存在就在当前目录下自动创建
			 Connection conn = DriverManager.getConnection(sql);
			 //3,创建表
			 Statement stat = conn.createStatement();
			 for(int i=1 ;i<=20000;i++){
			 String sql1="  create table bbb"+i+"   " +
			 				  " 	(" +
							  " ID             INTEGER primary key autoincrement," +
							  "  STREAMID       NUMBER(10)," +
							  "  STREAMTYPE     NUMBER(1)," +
							  "  FAVAILABILITY  NUMBER(5)," +
							  "  BANDWIDTH      NUMBER(4)," +
							  "  VALIDBANDWIDTH NUMBER(4)," +
							  "  MDI_DF         NUMBER(5)," +
							  "  MDI_MLR        NUMBER(5)," +
							  "  DELAY_TIME     NUMBER(5)," +
							  "  IPINTERVAL     NUMBER(5)," +
							  "  IPJITTER       NUMBER(5)," +
							  "  TIME           DATE," +
							  "  MLT15          NUMBER(5)," +
							  "  MLT24          NUMBER(5)," +
							  "  MLS            NUMBER(5)," +
							  "  SLICENUM       NUMBER(5)," +
							  "  CACHEDTIME     NUMBER(5)," +
							  "  STUCKTIME      NUMBER(5)," +
							  "  GETSLICEERR    NUMBER(5)," +
							  "  RETRANSMITRATE NUMBER(5)," +
							  "  REPEATRATE     NUMBER(5)," +
							  "  SECONDSFLAG    NUMBER(5)," +
							  "  PART    NUMBER(5)" +
							  " 	);";
			 System.out.println(sql1);
			 String sql2="CREATE INDEX index_flag"+i+" ON bbb"+i+"(SECONDSFLAG);";
			 String sql3="CREATE INDEX index_part"+i+" ON bbb"+i+"(PART);";
			 stat.executeUpdate( sql1 );
			 stat.executeUpdate( sql2 );
			 stat.executeUpdate( sql3 );
			 }
			 stat.close();
			 conn.close(); //结束数据库的连接 
		 }
		 catch( Exception e )
		 {
			 e.printStackTrace ( );
		 }
	}

}
import java.sql.*;
import org.sqlite.JDBC;
/**
 * 向第一个表中循环录入数据
 * @author HaiCheng
 *
 */
public class insertData {
	public static void main(String[] args) throws Exception {
		try{
			//1,保证SQLite数据库文件的路径首字符为小写,并且路径为unix路径
			String thisPath = "e:/haicheng.db";
			String sql = "jdbc:sqlite://"+thisPath;//windows && linux都适用
			//2,连接SQLite的JDBC
			Class.forName("org.sqlite.JDBC"); 
			//建立一个数据库名haicheng.db的连接,如果不存在就在当前目录下自动创建
			Connection conn = DriverManager.getConnection(sql);

			//4,插入一条数据
			for(int i=1;i<=86400;i++){
				 	PreparedStatement prep = conn.prepareStatement("insert into bbb1(STREAMID) values (?);");
				    prep.setInt(1, 0);
				    prep.addBatch();
				    conn.setAutoCommit(false);
				    prep.executeBatch();
			 }
			 conn.setAutoCommit(true);
			 stat.close();
			 conn.close(); //结束数据库的连接 
			 System.out.println("数据插入成功");
		 }
		 catch( Exception e )
		 {
			 System.out.println("数据插入异常");
			 e.printStackTrace ( );
		 }
	}

}
import java.sql.*;
import org.sqlite.JDBC;
/**
 * 向其余19999个表中批量拷贝数据
 * @author HaiCheng
 *
 */
public class copyData {
	public static void main(String[] args) throws Exception {
		try{
			 //1,保证SQLite数据库文件的路径首字符为小写,并且路径为unix路径
			 String thisPath = "e:/haicheng.db";
			 String sql = "jdbc:sqlite://"+thisPath;//windows && linux都适用
			 //2,连接SQLite的JDBC
			 Class.forName("org.sqlite.JDBC"); 
			 //建立一个数据库名haicheng.db的连接,如果不存在就在当前目录下自动创建
			 Connection conn = DriverManager.getConnection(sql);
			 //3,创建表
			 Statement stat = conn.createStatement();
			 for(int i=2;i<=20000;i++){
			 String sql1="insert into bbb"+i+"  select * from  bbb1";
			 System.out.println(sql1);
			 stat.execute(sql1);
			 }
			 stat.close();
			 conn.close(); //结束数据库的连接 
			 System.out.println("数据插入成功");
		 }
		 catch( Exception e )
		 {
			 System.out.println("数据插入异常");
			 e.printStackTrace ( );
		 }
	}

}
依次执行这三个类,当执行第三个类的时候也就是批量向数据库中录入数据的时候,当数据文件大小达到2G的临界点的时候(不同方式测试多遍都是这种情况),再继续写入数据,那么数据文件就会损坏(文件大小都变了,从2GB变成1MB了)。

分析各种原因:

(1)、正在写入数据的时候断电(排除,没有断电)

(2)、磁盘有坏道(排除,在磁盘中放些其他的文件,换一段空间存储这个数据同样到2GB崩溃)

(3)、数据文件所在磁盘空间不足(排除,硬盘空间足够、sqlite也不像Oracle那样有着表空间的概念)

最终我也没找到什么原因,发帖求助。

-------------------------------------------------------------------------------------------------------------------------

尴尬上面那些还是年前写的东西,也没有写完。最终是sqlite的问题没有解决。目前还是用着Mysql

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tempat Mysql: Pangkalan Data dan PengaturcaraanTempat Mysql: Pangkalan Data dan PengaturcaraanApr 13, 2025 am 12:18 AM

Kedudukan MySQL dalam pangkalan data dan pengaturcaraan sangat penting. Ia adalah sistem pengurusan pangkalan data sumber terbuka yang digunakan secara meluas dalam pelbagai senario aplikasi. 1) MySQL menyediakan fungsi penyimpanan data, organisasi dan pengambilan data yang cekap, sistem sokongan web, mudah alih dan perusahaan. 2) Ia menggunakan seni bina pelanggan-pelayan, menyokong pelbagai enjin penyimpanan dan pengoptimuman indeks. 3) Penggunaan asas termasuk membuat jadual dan memasukkan data, dan penggunaan lanjutan melibatkan pelbagai meja dan pertanyaan kompleks. 4) Soalan -soalan yang sering ditanya seperti kesilapan sintaks SQL dan isu -isu prestasi boleh disahpepijat melalui arahan jelas dan log pertanyaan perlahan. 5) Kaedah pengoptimuman prestasi termasuk penggunaan indeks rasional, pertanyaan yang dioptimumkan dan penggunaan cache. Amalan terbaik termasuk menggunakan urus niaga dan preparedStatemen

Mysql: Dari perniagaan kecil ke perusahaan besarMysql: Dari perniagaan kecil ke perusahaan besarApr 13, 2025 am 12:17 AM

MySQL sesuai untuk perusahaan kecil dan besar. 1) Perniagaan kecil boleh menggunakan MySQL untuk pengurusan data asas, seperti menyimpan maklumat pelanggan. 2) Perusahaan besar boleh menggunakan MySQL untuk memproses data besar dan logik perniagaan yang kompleks untuk mengoptimumkan prestasi pertanyaan dan pemprosesan transaksi.

Apa yang dibaca oleh Phantom dan bagaimana InnoDB menghalang mereka (kunci seterusnya)?Apa yang dibaca oleh Phantom dan bagaimana InnoDB menghalang mereka (kunci seterusnya)?Apr 13, 2025 am 12:16 AM

InnoDB secara berkesan menghalang pembacaan hantu melalui mekanisme utama. 1) Kekunci seterusnya menggabungkan kunci baris dan kunci jurang untuk mengunci rekod dan jurang mereka untuk mengelakkan rekod baru daripada dimasukkan. 2) Dalam aplikasi praktikal, dengan mengoptimumkan pertanyaan dan menyesuaikan tahap pengasingan, persaingan kunci dapat dikurangkan dan prestasi konkurensi dapat ditingkatkan.

MySQL: Bukan bahasa pengaturcaraan, tetapi ...MySQL: Bukan bahasa pengaturcaraan, tetapi ...Apr 13, 2025 am 12:03 AM

MySQL bukan bahasa pengaturcaraan, tetapi bahasa pertanyaannya SQL mempunyai ciri -ciri bahasa pengaturcaraan: 1. SQL menyokong penghakiman bersyarat, gelung dan operasi berubah -ubah; 2. Melalui prosedur, pencetus dan fungsi yang disimpan, pengguna boleh melakukan operasi logik yang kompleks dalam pangkalan data.

MySQL: Pengenalan kepada pangkalan data paling popular di duniaMySQL: Pengenalan kepada pangkalan data paling popular di duniaApr 12, 2025 am 12:18 AM

MySQL adalah sistem pengurusan pangkalan data relasi sumber terbuka, terutamanya digunakan untuk menyimpan dan mengambil data dengan cepat dan boleh dipercayai. Prinsip kerjanya termasuk permintaan pelanggan, resolusi pertanyaan, pelaksanaan pertanyaan dan hasil pulangan. Contoh penggunaan termasuk membuat jadual, memasukkan dan menanyakan data, dan ciri -ciri canggih seperti Operasi Join. Kesalahan umum melibatkan sintaks SQL, jenis data, dan keizinan, dan cadangan pengoptimuman termasuk penggunaan indeks, pertanyaan yang dioptimumkan, dan pembahagian jadual.

Kepentingan MySQL: Penyimpanan Data dan PengurusanKepentingan MySQL: Penyimpanan Data dan PengurusanApr 12, 2025 am 12:18 AM

MySQL adalah sistem pengurusan pangkalan data sumber terbuka yang sesuai untuk penyimpanan data, pengurusan, pertanyaan dan keselamatan. 1. Ia menyokong pelbagai sistem operasi dan digunakan secara meluas dalam aplikasi web dan bidang lain. 2. Melalui seni bina pelanggan-pelayan dan enjin penyimpanan yang berbeza, MySQL memproses data dengan cekap. 3. Penggunaan asas termasuk membuat pangkalan data dan jadual, memasukkan, menanyakan dan mengemas kini data. 4. Penggunaan lanjutan melibatkan pertanyaan kompleks dan prosedur yang disimpan. 5. Kesilapan umum boleh disahpepijat melalui pernyataan yang dijelaskan. 6. Pengoptimuman Prestasi termasuk penggunaan indeks rasional dan pernyataan pertanyaan yang dioptimumkan.

Mengapa menggunakan mysql? Faedah dan kelebihanMengapa menggunakan mysql? Faedah dan kelebihanApr 12, 2025 am 12:17 AM

MySQL dipilih untuk prestasi, kebolehpercayaan, kemudahan penggunaan, dan sokongan komuniti. 1.MYSQL Menyediakan fungsi penyimpanan dan pengambilan data yang cekap, menyokong pelbagai jenis data dan operasi pertanyaan lanjutan. 2. Mengamalkan seni bina pelanggan-pelayan dan enjin penyimpanan berganda untuk menyokong urus niaga dan pengoptimuman pertanyaan. 3. Mudah digunakan, menyokong pelbagai sistem operasi dan bahasa pengaturcaraan. 4. Mempunyai sokongan komuniti yang kuat dan menyediakan sumber dan penyelesaian yang kaya.

Huraikan mekanisme penguncian InnoDB (kunci yang dikongsi, kunci eksklusif, kunci niat, kunci rekod, kunci jurang, kunci seterusnya).Huraikan mekanisme penguncian InnoDB (kunci yang dikongsi, kunci eksklusif, kunci niat, kunci rekod, kunci jurang, kunci seterusnya).Apr 12, 2025 am 12:16 AM

Mekanisme kunci InnoDB termasuk kunci bersama, kunci eksklusif, kunci niat, kunci rekod, kunci jurang dan kunci utama seterusnya. 1. Kunci dikongsi membolehkan urus niaga membaca data tanpa menghalang urus niaga lain dari membaca. 2. Kunci eksklusif menghalang urus niaga lain daripada membaca dan mengubah suai data. 3. Niat Kunci mengoptimumkan kecekapan kunci. 4. Rekod Rekod Kunci Kunci Rekod. 5. Gap Lock Locks Index Rakaman Gap. 6. Kunci kunci seterusnya adalah gabungan kunci rekod dan kunci jurang untuk memastikan konsistensi data.

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
4 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

mPDF

mPDF

mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

Versi Mac WebStorm

Versi Mac WebStorm

Alat pembangunan JavaScript yang berguna

VSCode Windows 64-bit Muat Turun

VSCode Windows 64-bit Muat Turun

Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

EditPlus versi Cina retak

EditPlus versi Cina retak

Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

MantisBT

MantisBT

Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.