解剖SQLSERVER 第十七篇 使用 OrcaMDF Corruptor 故意损坏数据库(译) http://improve.dk/corrupting-databases-purpose-using-orcamdf-corruptor/ 有时候你必须先作恶,后行善。情况就是 当你想磨练你的数据库修复技能 我现在添加了一个Corruptor 类到Orca
解剖SQLSERVER 第十七篇 使用 OrcaMDF Corruptor 故意损坏数据库(译)
http://improve.dk/corrupting-databases-purpose-using-orcamdf-corruptor/
有时候你必须先作恶,后行善。情况就是 当你想磨练你的数据库修复技能
我现在添加了一个Corruptor 类到OrcaMDF里面 去测试新的RawDatabase 的功能。Corruptor 就跟他的名字一样--他会故意损坏数据库文件
Corruptor 本身是比较简单的。Corruptor 会随机选择一些页面并且简单的使用0来完全复写页面。
根据页面的类型,这可能会造成致命伤害
我不想多说什么了,不过万一。。。请不要在你的生产库上运行。这会损坏你的数据。
例子
有两个 Corruptor.CorruptFile重载方法,他们都返回integers 的枚举值 -- 一系列的pageid 列表并且被复写0的
下面的代码会损坏5%的页面在AdventureWorks2008R2LT.mdf 文件里面,然后他会输出每个被损坏了的页面ID 。
你可以定义损坏页面的百分比 只需要改变第二个参数
<span>var</span> corruptedPageIDs = Corruptor.CorruptFile(<span>@"</span><span>C:\AdventureWorks2008R2LT.mdf</span><span>"</span>, <span>0.05</span><span>); Console.WriteLine(</span><span>string</span>.Join(<span>"</span><span>, </span><span>"</span>, corruptedPageIDs));
<span>606</span>, <span>516</span>, <span>603</span>, <span>521</span>, <span>613</span>, <span>621</span>, <span>118</span>, <span>47</span>, <span>173</span>, <span>579</span><span>, </span><span>323</span>, <span>217</span>, <span>358</span>, <span>515</span>, <span>615</span>, <span>271</span>, <span>176</span>, <span>596</span>, <span>417</span>, <span>379</span><span>, </span><span>269</span>, <span>409</span>, <span>558</span>, <span>103</span>, <span>8</span>, <span>636</span>, <span>200</span>, <span>361</span>, <span>60</span>, <span>486</span><span>, </span><span>366</span>, <span>99</span>, <span>87</span>
为了使损坏更厉害,你也可以使用第二个重载方法,他允许你定义一个确切的损坏页面的数目,在一个确定的pageid范围内。
下面的代码会确切的损坏pageid在0到49这个范围内的10个页面,因此会损坏大部分的元数据,大家知道系统表的数据基本都存储在数据库最靠前的页面上
<span>var</span> corruptedPageIDs = Corruptor.CorruptFile(<span>@"</span><span>C:\AdventureWorks2008R2LT.mdf</span><span>"</span>, <span>10</span>, <span>0</span>, <span>49</span><span>); Console.WriteLine(</span><span>string</span>.Join(<span>"</span><span>, </span><span>"</span>, corruptedPageIDs));
<span>16</span>, <span>4</span>, <span>0</span>, <span>32</span>, <span>15</span>, <span>14</span>, <span>30</span>, <span>2</span>, <span>49</span>, <span>9</span>
在上面的情况我非常不幸的看到 下面这些页面都被填充了0 包括:
file header page,page 2 is the first GAM page,page 9 is the boot page ,page 16 allocation unit metadata。
这样的损坏程度,即使使用DBCC CHECKDB也没办法修复,留下给你的选择只有从备份中还原
或者,你可以尝试一下使用OrcaMDF RawDatabase去恢复尽可能多的数据,先到这里了,我以后还会继续介绍。
<span>DBCC</span> TRACEON(<span>3604</span>,<span>-</span><span>1</span><span>) </span><span>GO</span> <span>DBCC</span> PAGE(<span>[</span><span>sss</span><span>]</span>,<span>1</span>,<span>16</span>,<span>3</span><span>) </span><span>GO</span> <span>DBCC</span> 执行完毕。如果 <span>DBCC</span><span> 输出了错误信息,请与系统管理员联系。 PAGE: (</span><span>1</span>:<span>16</span><span>) BUFFER: BUF </span><span>@0x0000000080FDEB80</span><span> bpage </span><span>=</span> <span>0x0000000080A74000</span> bhash <span>=</span> <span>0x0000000000000000</span> bpageno <span>=</span> (<span>1</span>:<span>16</span><span>) bdbid </span><span>=</span> <span>8</span> breferences <span>=</span> <span>0</span> bcputicks <span>=</span> <span>0</span><span> bsampleCount </span><span>=</span> <span>0</span> bUse1 <span>=</span> <span>19980</span> bstat <span>=</span> <span>0xc00009</span><span> blog </span><span>=</span> <span>0x32159</span> bnext <span>=</span> <span>0x0000000000000000</span><span> PAGE HEADER: Page </span><span>@0x0000000080A74000</span><span> m_pageId </span><span>=</span> (<span>1</span>:<span>16</span>) m_headerVersion <span>=</span> <span>1</span> m_type <span>=</span> <span>1</span><span> m_typeFlagBits </span><span>=</span> <span>0x4</span> m_level <span>=</span> <span>0</span> m_flagBits <span>=</span> <span>0x200</span><span> m_objId (AllocUnitId.idObj) </span><span>=</span> <span>7</span> m_indexId (AllocUnitId.idInd) <span>=</span> <span>0</span> Metadata: AllocUnitId <span>=</span> <span>458752</span><span> Metadata: PartitionId </span><span>=</span> <span>458752</span> Metadata: IndexId <span>=</span> <span>1</span> Metadata: ObjectId <span>=</span> <span>7</span><span> m_prevPage </span><span>=</span> (<span>0</span>:<span>0</span>) m_nextPage <span>=</span> (<span>1</span>:<span>130</span>) pminlen <span>=</span> <span>73</span><span> m_slotCnt </span><span>=</span> <span>49</span> m_freeCnt <span>=</span> <span>4225</span> m_freeData <span>=</span> <span>4331</span><span> m_reservedCnt </span><span>=</span> <span>0</span> m_lsn <span>=</span> (<span>1037</span>:<span>459</span>:<span>3</span>) m_xactReserved <span>=</span> <span>0</span><span> m_xdesId </span><span>=</span> (<span>0</span>:<span>455</span>) m_ghostRecCnt <span>=</span> <span>0</span> m_tornBits <span>=</span> <span>-</span><span>563242027</span><span> Allocation Status GAM (</span><span>1</span>:<span>2</span>) <span>=</span> ALLOCATED SGAM (<span>1</span>:<span>3</span>) <span>=</span> <span>NOT</span><span> ALLOCATED PFS (</span><span>1</span>:<span>1</span>) <span>=</span> <span>0x60</span> MIXED_EXT ALLOCATED 0_PCT_FULL DIFF (<span>1</span>:<span>6</span>) <span>=</span><span> CHANGED ML (</span><span>1</span>:<span>7</span>) <span>=</span> <span>NOT</span><span> MIN_LOGGED Slot </span><span>0</span> Offset <span>0x60</span> Length <span>77</span><span> Record Type </span><span>=</span> PRIMARY_RECORD Record Attributes <span>=</span> NULL_BITMAP Record Size <span>=</span> <span>77</span><span> Memory </span><span>Dump</span> <span>@0x000000000DC7A060</span> <span>0000000000000000</span>: <span>10004900</span> <span>00000300</span> <span>00000000</span> <span>01000003</span><span> †..I............. </span><span>0000000000000010</span>: <span>00000000</span> <span>00000000</span> 0001001f <span>00000001</span><span> †................ </span><span>0000000000000020</span>: <span>00570000</span> <span>00010056</span> <span>00000001</span><span> 000b0000 †.W.....V........ </span><span>0000000000000030</span>: <span>00000000</span> <span>00090000</span> <span>00000000</span> <span>00110000</span><span> †..... .......... </span><span>0000000000000040</span>: <span>00000000</span> <span>00010000</span> 000c0000 <span>00</span><span>††††††††............. Slot </span><span>0</span> <span>Column</span> <span>1</span> Offset <span>0x4</span> Length <span>8</span> Length (physical) <span>8</span><span> auid </span><span>=</span> <span>196608</span><span> Slot </span><span>0</span> <span>Column</span> <span>2</span> Offset <span>0xc</span> Length <span>1</span> Length (physical) <span>1</span><span> type </span><span>=</span> <span>1</span><span> Slot </span><span>0</span> <span>Column</span> <span>3</span> Offset <span>0xd</span> Length <span>8</span> Length (physical) <span>8</span><span> ownerid </span><span>=</span> <span>196608</span><span> Slot </span><span>0</span> <span>Column</span> <span>4</span> Offset <span>0x15</span> Length <span>4</span> Length (physical) <span>4</span><span> status </span><span>=</span> <span>0</span><span> Slot </span><span>0</span> <span>Column</span> <span>5</span> Offset <span>0x19</span> Length <span>2</span> Length (physical) <span>2</span><span> fgid </span><span>=</span> <span>1</span><span> pgfirst </span><span>=</span> <span>[</span><span>Binary data</span><span>]</span> Slot <span>0</span> <span>Column</span> <span>6</span> Offset <span>0x1b</span> Length <span>6</span> Length (physical) <span>6</span><span> pgfirst </span><span>=</span> <span>0x1f0000000100</span><span> pgroot </span><span>=</span> <span>[</span><span>Binary data</span><span>]</span> Slot <span>0</span> <span>Column</span> <span>7</span> Offset <span>0x21</span> Length <span>6</span> Length (physical) <span>6</span><span> pgroot </span><span>=</span> <span>0x570000000100</span><span> pgfirstiam </span><span>=</span> <span>[</span><span>Binary data</span><span>]</span> Slot <span>0</span> <span>Column</span> <span>8</span> Offset <span>0x27</span> Length <span>6</span> Length (physical) <span>6</span><span> pgfirstiam </span><span>=</span> <span>0x560000000100</span><span> Slot </span><span>0</span> <span>Column</span> <span>9</span> Offset <span>0x2d</span> Length <span>8</span> Length (physical) <span>8</span><span> pcused </span><span>=</span> <span>11</span><span> Slot </span><span>0</span> <span>Column</span> <span>10</span> Offset <span>0x35</span> Length <span>8</span> Length (physical) <span>8</span><span> pcdata </span><span>=</span> <span>9</span><span> Slot </span><span>0</span> <span>Column</span> <span>11</span> Offset <span>0x3d</span> Length <span>8</span> Length (physical) <span>8</span><span> pcreserved </span><span>=</span> <span>17</span><span> Slot </span><span>0</span> <span>Column</span> <span>12</span> Offset <span>0x45</span> Length <span>4</span> Length (physical) <span>4</span><span> dbfragid </span><span>=</span> <span>1</span><span> Slot </span><span>0</span> Offset <span>0x0</span> Length <span>0</span> Length (physical) <span>0</span><span> KeyHashValue </span><span>=</span> (016862d84319)
SELECT COUNT(*) FROM sys.[allocation_units]
--131
SELECT * FROM sys.[allocation_units]
SELECT * FROM sys.[system_internals_allocation_units]
存储在数据库1:16页面上(是[sys.system_internals_allocation_units]系统表)《深入解析sql2008》
第十七篇完

Kedudukan MySQL dalam pangkalan data dan pengaturcaraan sangat penting. Ia adalah sistem pengurusan pangkalan data sumber terbuka yang digunakan secara meluas dalam pelbagai senario aplikasi. 1) MySQL menyediakan fungsi penyimpanan data, organisasi dan pengambilan data yang cekap, sistem sokongan web, mudah alih dan perusahaan. 2) Ia menggunakan seni bina pelanggan-pelayan, menyokong pelbagai enjin penyimpanan dan pengoptimuman indeks. 3) Penggunaan asas termasuk membuat jadual dan memasukkan data, dan penggunaan lanjutan melibatkan pelbagai meja dan pertanyaan kompleks. 4) Soalan -soalan yang sering ditanya seperti kesilapan sintaks SQL dan isu -isu prestasi boleh disahpepijat melalui arahan jelas dan log pertanyaan perlahan. 5) Kaedah pengoptimuman prestasi termasuk penggunaan indeks rasional, pertanyaan yang dioptimumkan dan penggunaan cache. Amalan terbaik termasuk menggunakan urus niaga dan preparedStatemen

MySQL sesuai untuk perusahaan kecil dan besar. 1) Perniagaan kecil boleh menggunakan MySQL untuk pengurusan data asas, seperti menyimpan maklumat pelanggan. 2) Perusahaan besar boleh menggunakan MySQL untuk memproses data besar dan logik perniagaan yang kompleks untuk mengoptimumkan prestasi pertanyaan dan pemprosesan transaksi.

InnoDB secara berkesan menghalang pembacaan hantu melalui mekanisme utama. 1) Kekunci seterusnya menggabungkan kunci baris dan kunci jurang untuk mengunci rekod dan jurang mereka untuk mengelakkan rekod baru daripada dimasukkan. 2) Dalam aplikasi praktikal, dengan mengoptimumkan pertanyaan dan menyesuaikan tahap pengasingan, persaingan kunci dapat dikurangkan dan prestasi konkurensi dapat ditingkatkan.

MySQL bukan bahasa pengaturcaraan, tetapi bahasa pertanyaannya SQL mempunyai ciri -ciri bahasa pengaturcaraan: 1. SQL menyokong penghakiman bersyarat, gelung dan operasi berubah -ubah; 2. Melalui prosedur, pencetus dan fungsi yang disimpan, pengguna boleh melakukan operasi logik yang kompleks dalam pangkalan data.

MySQL adalah sistem pengurusan pangkalan data relasi sumber terbuka, terutamanya digunakan untuk menyimpan dan mengambil data dengan cepat dan boleh dipercayai. Prinsip kerjanya termasuk permintaan pelanggan, resolusi pertanyaan, pelaksanaan pertanyaan dan hasil pulangan. Contoh penggunaan termasuk membuat jadual, memasukkan dan menanyakan data, dan ciri -ciri canggih seperti Operasi Join. Kesalahan umum melibatkan sintaks SQL, jenis data, dan keizinan, dan cadangan pengoptimuman termasuk penggunaan indeks, pertanyaan yang dioptimumkan, dan pembahagian jadual.

MySQL adalah sistem pengurusan pangkalan data sumber terbuka yang sesuai untuk penyimpanan data, pengurusan, pertanyaan dan keselamatan. 1. Ia menyokong pelbagai sistem operasi dan digunakan secara meluas dalam aplikasi web dan bidang lain. 2. Melalui seni bina pelanggan-pelayan dan enjin penyimpanan yang berbeza, MySQL memproses data dengan cekap. 3. Penggunaan asas termasuk membuat pangkalan data dan jadual, memasukkan, menanyakan dan mengemas kini data. 4. Penggunaan lanjutan melibatkan pertanyaan kompleks dan prosedur yang disimpan. 5. Kesilapan umum boleh disahpepijat melalui pernyataan yang dijelaskan. 6. Pengoptimuman Prestasi termasuk penggunaan indeks rasional dan pernyataan pertanyaan yang dioptimumkan.

MySQL dipilih untuk prestasi, kebolehpercayaan, kemudahan penggunaan, dan sokongan komuniti. 1.MYSQL Menyediakan fungsi penyimpanan dan pengambilan data yang cekap, menyokong pelbagai jenis data dan operasi pertanyaan lanjutan. 2. Mengamalkan seni bina pelanggan-pelayan dan enjin penyimpanan berganda untuk menyokong urus niaga dan pengoptimuman pertanyaan. 3. Mudah digunakan, menyokong pelbagai sistem operasi dan bahasa pengaturcaraan. 4. Mempunyai sokongan komuniti yang kuat dan menyediakan sumber dan penyelesaian yang kaya.

Mekanisme kunci InnoDB termasuk kunci bersama, kunci eksklusif, kunci niat, kunci rekod, kunci jurang dan kunci utama seterusnya. 1. Kunci dikongsi membolehkan urus niaga membaca data tanpa menghalang urus niaga lain dari membaca. 2. Kunci eksklusif menghalang urus niaga lain daripada membaca dan mengubah suai data. 3. Niat Kunci mengoptimumkan kecekapan kunci. 4. Rekod Rekod Kunci Kunci Rekod. 5. Gap Lock Locks Index Rakaman Gap. 6. Kunci kunci seterusnya adalah gabungan kunci rekod dan kunci jurang untuk memastikan konsistensi data.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft