题目要求:Prime Generator http://www.spoj.com/problems/PRIME1/
要求计算最多10组,每组由两个数m,n构成(1<=m<=n<=1000000000,n-m<100000),要求打印出m,n之间的所有素数(包括m,n),时间限制6s。下面是我采用筛法写的python代码,但是仍然超时,到底是哪里错了呢?
我写的代码:
from math import sqrt
def PrimeGenerator():
n = input()
a = range(n)
for i in range(n):
a[i] = raw_input().split()
for aa in a:
start = int(aa[0])
end = int(aa[-1])
length = end - start + 1
l = [True] * length
for i in range(2, int(sqrt(end)) + 1): # 筛子
if start == 1: # 排除1
k = i * 2
while k <= end:
l[k-start] = False
k += i
l[0] = False
elif start == 2: # 2是素数
k = i * 2
while k <= end:
l[k-start] = False
k += i
else: # 有一些下限值小于筛子的情况
k = start <= i and i * 2 or i * (start / i)
while k <= end:
if k >= start:
l[k-start] = False
k += i
for i in range(length):
if l[i]:
print i + start
print
PrimeGenerator()
伊谢尔伦2017-04-17 11:44:40
筛法从时间复杂度上就没法满足题目的要求,超时是必然的。 筛法求出小于sqrt(1000000000)的所有素数(大约3400个),然后用这些素数再筛一次来判断[m, n]之间的数是否是素数。
或者试试 fermat test 或者 miller-rabin test 吧因为是概率算法,会WA。
伊谢尔伦2017-04-17 11:44:40
终于过了,由于之前的筛子不是素数,所以比较慢。先把2-sqrt(1,000,000,000)之间的素数过滤出来,再去筛就很快了。修改之后的代码是这样的,代码结构可能不是很好,但是逻辑是对的。
from math import sqrt
def Primes(primes=[]):
for i in range(3,31622,2):
isprime = True
cap = sqrt(i)+1
for j in primes:
if (j >= cap):
break
if (i % j == 0):
isprime = False
break
if (isprime):
primes.append(i)
def PrimeGenerator():
primes = [2]
Primes(primes)
n = input()
a = range(n)
for i in range(n):
a[i] = raw_input().split()
for aa in a:
start = int(aa[0])
end = int(aa[-1])
length = end - start + 1
l = [True] * length
for i in primes:
if i > sqrt(end):
break
if start == 1:
k = i * 2
while k <= end:
l[k-start] = False
k += i
l[0] = False
elif start == 2:
k = i * 2
while k <= end:
l[k-start] = False
k += i
else:
k = start <= i and i * 2 or i * (start / i)
while k <= end:
if k >= start:
l[k-start] = False
k += i
for i in range(length):
if l[i]:
print i + start
print
PrimeGenerator()