作为毕业狗想研究下土地出让方面的信息,需要每一笔的土地出让数据。想从中国土地市场网的土地成交结果公告(http://www.landchina.com/default.aspx?tabid=263&ComName=default)中点击每一笔土地,在跳转后的详细页面中下载“土地用途” “成交价格” “供地方式” “项目位置”等信息,
由于共有100多万笔土地成交信息,手动查找是不可能了,想问下能不能用爬虫给下载下来?以及预计难度和耗费时间?跪谢各位。
回复内容:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import requests
from bs4 import BeautifulSoup
import time
import random
import sys
def get_post_data(url, headers):
# 访问一次网页,获取post需要的信息
data = {
'TAB_QuerySubmitSortData': '',
'TAB_RowButtonActionControl': '',
}
try:
req = requests.get(url, headers=headers)
except Exception, e:
print 'get baseurl failed, try again!', e
sys.exit(1)
try:
soup = BeautifulSoup(req.text, "html.parser")
TAB_QueryConditionItem = soup.find(
'input', id="TAB_QueryConditionItem270").get('value')
# print TAB_QueryConditionItem
data['TAB_QueryConditionItem'] = TAB_QueryConditionItem
TAB_QuerySortItemList = soup.find(
'input', id="TAB_QuerySort0").get('value')
# print TAB_QuerySortItemList
data['TAB_QuerySortItemList'] = TAB_QuerySortItemList
data['TAB_QuerySubmitOrderData'] = TAB_QuerySortItemList
__EVENTVALIDATION = soup.find(
'input', id='__EVENTVALIDATION').get('value')
# print __EVENTVALIDATION
data['__EVENTVALIDATION'] = __EVENTVALIDATION
__VIEWSTATE = soup.find('input', id='__VIEWSTATE').get('value')
# print __VIEWSTATE
data['__VIEWSTATE'] = __VIEWSTATE
except Exception, e:
print 'get post data failed, try again!', e
sys.exit(1)
return data
def get_info(url, headers):
req = requests.get(url, headers=headers)
soup = BeautifulSoup(req.text, "html.parser")
items = soup.find(
'table', id="mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1")
# 所需信息组成字典
info = {}
# 行政区
division = items.find(
'span', id="mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r1_c2_ctrl").get_text().encode('utf-8')
info['XingZhengQu'] = division
# 项目位置
location = items.find(
'span', id="mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r16_c2_ctrl").get_text().encode('utf-8')
info['XiangMuWeiZhi'] = location
# 面积(公顷)
square = items.find(
'span', id="mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r2_c2_ctrl").get_text().encode('utf-8')
info['MianJi'] = square
# 土地用途
purpose = items.find(
'span', id="mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r3_c2_ctrl").get_text().encode('utf-8')
info['TuDiYongTu'] = purpose
# 供地方式
source = items.find(
'span', id="mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r3_c4_ctrl").get_text().encode('utf-8')
info['GongDiFangShi'] = source
# 成交价格(万元)
price = items.find(
'span', id="mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r20_c4_ctrl").get_text().encode('utf-8')
info['ChengJiaoJiaGe'] = price
# print info
# 用唯一值的电子监管号当key, 所需信息当value的字典
all_info = {}
Key_ID = items.find(
'span', id="mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r1_c4_ctrl").get_text().encode('utf-8')
all_info[Key_ID] = info
return all_info
def get_pages(baseurl, headers, post_data, date):
print 'date', date
# 补全post data
post_data['TAB_QuerySubmitConditionData'] = post_data[
'TAB_QueryConditionItem'] + ':' + date
page = 1
while True:
print ' page {0}'.format(page)
# 休息一下,防止被网页识别为爬虫机器人
time.sleep(random.random() * 3)
post_data['TAB_QuerySubmitPagerData'] = str(page)
req = requests.post(baseurl, data=post_data, headers=headers)
# print req
soup = BeautifulSoup(req.text, "html.parser")
items = soup.find('table', id="TAB_contentTable").find_all(
'tr', onmouseover=True)
# print items
for item in items:
print item.find('td').get_text()
link = item.find('a')
if link:
print item.find('a').text
url = 'http://www.landchina.com/' + item.find('a').get('href')
print get_info(url, headers)
else:
print 'no content, this ten days over'
return
break
page += 1
if __name__ == "__main__":
# time.time()
baseurl = 'http://www.landchina.com/default.aspx?tabid=263'
headers = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/46.0.2490.71 Safari/537.36',
'Host': 'www.landchina.com'
}
post_data = (get_post_data(baseurl, headers))
date = '2015-11-21~2015-11-30'
get_pages(baseurl, headers, post_data, date)
不请自来,知乎首答,同为大四毕业狗之前帮老师爬过这个信息,从1995年-2015年有170多万条,算了下时间需要40多个小时才能爬完。我爬到2000年就没有继续爬了。当时写代码的时候刚学爬虫,不懂原理,发现这个网页点击下一页以及改变日期后,网址是不会变的,网址是不会变的,网址是不会变的Orz,对于新手来说根本不知道是为什么。后来就去找办法,学了点selenium,利用它来模拟浏览器操作,更改日期、点击下一页什么的都可以实现了。好处是简单粗暴,坏处是杀鸡用牛刀,占用了系统太多资源。再到后来,学会了一点抓包技术,知道了原来日期和换页都是通过post请求的。今天下午就把程序修改了一下,用post代替了原来的selenium。废话不说,上代码了。
# -*- coding: gb18030 -*-
'landchina 爬起来!'
import requests
import csv
from bs4 import BeautifulSoup
import datetime
import re
import os
class Spider():
def __init__(self):
self.url='http://www.landchina.com/default.aspx?tabid=263'
#这是用post要提交的数据
self.postData={ 'TAB_QueryConditionItem':'9f2c3acd-0256-4da2-a659-6949c4671a2a',
'TAB_QuerySortItemList':'282:False',
#日期
'TAB_QuerySubmitConditionData':'9f2c3acd-0256-4da2-a659-6949c4671a2a:',
'TAB_QuerySubmitOrderData':'282:False',
#第几页
'TAB_QuerySubmitPagerData':''}
self.rowName=[u'行政区',u'电子监管号',u'项目名称',u'项目位置',u'面积(公顷)',u'土地来源',u'土地用途',u'供地方式',u'土地使用年限',u'行业分类',u'土地级别',u'成交价格(万元)',u'土地使用权人',u'约定容积率下限',u'约定容积率上限',u'约定交地时间',u'约定开工时间',u'约定竣工时间',u'实际开工时间',u'实际竣工时间',u'批准单位',u'合同签订日期']
#这是要抓取的数据,我把除了分期约定那四项以外的都抓取了
self.info=[
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r1_c2_ctrl',#0
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r1_c4_ctrl',#1
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r17_c2_ctrl',#2
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r16_c2_ctrl',#3
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r2_c2_ctrl',#4
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r2_c4_ctrl',#5
#这条信息是土地来源,抓取下来的是数字,它要经过换算得到土地来源,不重要,我就没弄了
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r3_c2_ctrl',#6
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r3_c4_ctrl',#7
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r19_c2_ctrl', #8
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r19_c4_ctrl',#9
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r20_c2_ctrl',#10
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r20_c4_ctrl',#11
## 'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f3_r2_c1_0_ctrl',
## 'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f3_r2_c2_0_ctrl',
## 'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f3_r2_c3_0_ctrl',
## 'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f3_r2_c4_0_ctrl',
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r9_c2_ctrl',#12
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f2_r1_c2_ctrl',
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f2_r1_c4_ctrl',
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r21_c4_ctrl',
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r22_c2',
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r22_c4_ctrl',
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r10_c2_ctrl',
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r10_c4_ctrl',
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r14_c2_ctrl',
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r14_c4_ctrl']
#第一步
def handleDate(self,year,month,day):
#返回日期数据
'return date format %Y-%m-%d'
date=datetime.date(year,month,day)
# print date.datetime.datetime.strftime('%Y-%m-%d')
return date #日期对象
def timeDelta(self,year,month):
#计算一个月有多少天
date=datetime.date(year,month,1)
try:
date2=datetime.date(date.year,date.month+1,date.day)
except:
date2=datetime.date(date.year+1,1,date.day)
dateDelta=(date2-date).days
return dateDelta
def getPageContent(self,pageNum,date):
#指定日期和页数,打开对应网页,获取内容
postData=self.postData.copy()
#设置搜索日期
queryDate=date.strftime('%Y-%m-%d')+'~'+date.strftime('%Y-%m-%d')
postData['TAB_QuerySubmitConditionData']+=queryDate
#设置页数
postData['TAB_QuerySubmitPagerData']=str(pageNum)
#请求网页
r=requests.post(self.url,data=postData,timeout=30)
r.encoding='gb18030'
pageContent=r.text
# f=open('content.html','w')
# f.write(content.encode('gb18030'))
# f.close()
return pageContent
#第二步
def getAllNum(self,date):
#1无内容 2只有1页 3 1—200页 4 200页以上
firstContent=self.getPageContent(1,date)
if u'没有检索到相关数据' in firstContent:
print date,'have','0 page'
return 0
pattern=re.compile(u'<td.*?class="pager".*?>共(.*?)页.*?</td>')
result=re.search(pattern,firstContent)
if result==None:
print date,'have','1 page'
return 1
if int(result.group(1))<=200:
print date,'have',int(result.group(1)),'page'
return int(result.group(1))
else:
print date,'have','200 page'
return 200
#第三步
def getLinks(self,pageNum,date):
'get all links'
pageContent=self.getPageContent(pageNum,date)
links=[]
pattern=re.compile(u'<a.*?href="default.aspx.*?tabid=386(.*?)".*?>',re.S)
results=re.findall(pattern,pageContent)
for result in results:
links.append('http://www.landchina.com/default.aspx?tabid=386'+result)
return links
def getAllLinks(self,allNum,date):
pageNum=1
allLinks=[]
while pageNum<=allNum:
links=self.getLinks(pageNum,date)
allLinks+=links
print 'scrapy link from page',pageNum,'/',allNum
pageNum+=1
print date,'have',len(allLinks),'link'
return allLinks
#第四步
def getLinkContent(self,link):
'open the link to get the linkContent'
r=requests.get(link,timeout=30)
r.encoding='gb18030'
linkContent=r.text
# f=open('linkContent.html','w')
# f.write(linkContent.encode('gb18030'))
# f.close()
return linkContent
def getInfo(self,linkContent):
"get every item's info"
data=[]
soup=BeautifulSoup(linkContent)
for item in self.info:
if soup.find(id=item)==None:
s=''
else:
s=soup.find(id=item).string
if s==None:
s=''
data.append(unicode(s.strip()))
return data
def saveInfo(self,data,date):
fileName= 'landchina/'+datetime.datetime.strftime(date,'%Y')+'/'+datetime.datetime.strftime(date,'%m')+'/'+datetime.datetime.strftime(date,'%d')+'.csv'
if os.path.exists(fileName):
mode='ab'
else:
mode='wb'
csvfile=file(fileName,mode)
writer=csv.writer(csvfile)
if mode=='wb':
writer.writerow([name.encode('gb18030') for name in self.rowName])
writer.writerow([d.encode('gb18030') for d in data])
csvfile.close()
def mkdir(self,date):
#创建目录
path = 'landchina/'+datetime.datetime.strftime(date,'%Y')+'/'+datetime.datetime.strftime(date,'%m')
isExists=os.path.exists(path)
if not isExists:
os.makedirs(path)
def saveAllInfo(self,allLinks,date):
for (i,link) in enumerate(allLinks):
linkContent=data=None
linkContent=self.getLinkContent(link)
data=self.getInfo(linkContent)
self.mkdir(date)
self.saveInfo(data,date)
print 'save info from link',i+1,'/',len(allLinks)
你可以去神箭手云爬虫开发平台看看。在云上简单几行js就可以实现爬虫,如果这都懒得做也可以联系官方进行定制,任何网站都可以爬,总之是个很方便的爬虫基础设施平台。
这个结构化如此清晰的数据,要采集这个数据是很容易的。 通过多年的数据处理经验,可以给你以下几个建议:1. 多线程
2. 防止封IP
3. 用Mongdb存储大型非结构化数据
了解更多可以访问探码科技大数据介绍页面:http://www.tanmer.com/bigdata 我抓过这个网站的结束合同,还是比较好抓的。抓完生成表格,注意的就是选择栏的异步地区等内容,需要对他的js下载下来队形异步请求。提交数据即可。请求的时候在他的主页有一个id。好像是这么个东西,去年做的,记不清了,我有源码可以给你分享。用java写的 我是爬虫小白,请教下,不是说不能爬取asp的页面吗?
详细内容页的地址是”default.aspx?tabid=386&comname=default&wmguid=75c725。。。“,网站是在default.aspx页读取数据库显示详细信息,不是说读不到数据库里的数据吗?

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python 3.6에 피클 파일로드 3.6 환경 보고서 오류 : modulenotfounderror : nomodulename ...

경치 좋은 스팟 댓글 분석에서 Jieba Word 세분화 문제를 해결하는 방법은 무엇입니까? 경치가 좋은 스팟 댓글 및 분석을 수행 할 때 종종 Jieba Word 세분화 도구를 사용하여 텍스트를 처리합니다 ...

정규 표현식을 사용하여 첫 번째 닫힌 태그와 정지와 일치하는 방법은 무엇입니까? HTML 또는 기타 마크 업 언어를 다룰 때는 정규 표현식이 종종 필요합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

드림위버 CS6
시각적 웹 개발 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

뜨거운 주제



