这几天在翻旧代码时发现以前写的注释部分有很多单词拼写错误,这些单词错得不算离谱,应该可以用工具自动纠错绝大部分。用 Python 写个拼写检查脚本很容易,如果能很好利用 aspell/ispell 这些现成的小工具就更简单了。
要点
1、输入一个拼写错误的单词,调用 aspell -a 后得到一些候选正确单词,然后用距离编辑进一步嗮选出更精确的词。比如运行 aspell -a,输入 ‘hella' 后得到如下结果:
hell, Helli, hello, heal, Heall, he'll, hells, Heller, Ella, Hall, Hill, Hull, hall, heel, hill, hula, hull, Helga, Helsa, Bella, Della, Mella, Sella, fella, Halli, Hally, Hilly, Holli, Holly, hallo, hilly, holly, hullo, Hell's, hell's
2、什么是距离编辑(Edit-Distance,也叫 Levenshtein algorithm)呢?就是说给定一个单词,通过多次插入、删除、交换、替换单字符的操作后枚举出所有可能的正确拼写,比如输入 ‘hella',经过多次插入、删除、交换、替换单字符的操作后变成:
‘helkla', ‘hjlla', ‘hylla', ‘hellma', ‘khella', ‘iella', ‘helhla', ‘hellag', ‘hela', ‘vhella', ‘hhella', ‘hell', ‘heglla', ‘hvlla', ‘hellaa', ‘ghella', ‘hellar', ‘heslla', ‘lhella', ‘helpa', ‘hello', …
3、综合上面2个集合的结果,并且考虑到一些理论知识可以提高拼写检查的准确度,比如一般来说写错单词都是无意的或者误打,完全错的单词可能性很小,而且单词的第一个字母一般不会拼错。所以可以在上面集合里去掉第一个字母不符合的单词,比如:'Sella', ‘Mella', khella', ‘iella' 等,这里 VPSee 不删除单词,而把这些单词从队列里取出来放到队列最后(优先级降低),所以实在匹配不了以 h 开头的单词才去匹配那些以其他字母开头的单词。
4、程序中用到了外部工具 aspell,如何在 Python 里捕捉外部程序的输入和输出以便在 Python 程序里处理这些输入和输出呢?Python 2.4 以后引入了 subprocess 模块,可以用 subprocess.Popen 来处理。
5、Google 大牛 Peter Norvig 写了一篇 How to Write a Spelling Corrector 很值得一看,大牛就是大牛,21行 Python 就解决拼写问题,而且还不用外部工具,只需要事先读入一个词典文件。本文程序的 edits1 函数就是从牛人家那里 copy 的。
代码
#!/usr/bin/python # A simple spell checker import os, sys, subprocess, signal alphabet = 'abcdefghijklmnopqrstuvwxyz' def found(word, args, cwd = None, shell = True): child = subprocess.Popen(args, shell = shell, stdin = subprocess.PIPE, stdout = subprocess.PIPE, cwd = cwd, universal_newlines = True) child.stdout.readline() (stdout, stderr) = child.communicate(word) if ": " in stdout: # remove \n\n stdout = stdout.rstrip("\n") # remove left part until : left, candidates = stdout.split(": ", 1) candidates = candidates.split(", ") # making an error on the first letter of a word is less # probable, so we remove those candidates and append them # to the tail of queue, make them less priority for item in candidates: if item[0] != word[0]: candidates.remove(item) candidates.append(item) return candidates else: return None # copy from http://norvig.com/spell-correct.html def edits1(word): n = len(word) return set([word[0:i]+word[i+1:] for i in range(n)] + [word[0:i]+word[i+1]+word[i]+word[i+2:] for i in range(n-1)] + [word[0:i]+c+word[i+1:] for i in range(n) for c in alphabet] + [word[0:i]+c+word[i:] for i in range(n+1) for c in alphabet]) def correct(word): candidates1 = found(word, 'aspell -a') if not candidates1: print "no suggestion" return candidates2 = edits1(word) candidates = [] for word in candidates1: if word in candidates2: candidates.append(word) if not candidates: print "suggestion: %s" % candidates1[0] else: print "suggestion: %s" % max(candidates) def signal_handler(signal, frame): sys.exit(0) if __name__ == '__main__': signal.signal(signal.SIGINT, signal_handler) while True: input = raw_input() correct(input)
更简单的方法
当然直接在程序里调用相关模块最简单了,有个叫做 PyEnchant 的库支持拼写检查,安装 PyEnchant 和 Enchant 后就可以直接在 Python 程序里 import 了:
>>> import enchant >>> d = enchant.Dict("en_US") >>> d.check("Hello") True >>> d.check("Helo") False >>> d.suggest("Helo") ['He lo', 'He-lo', 'Hello', 'Helot', 'Help', 'Halo', 'Hell', 'Held', 'Helm', 'Hero', "He'll"] >>>

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

드림위버 CS6
시각적 웹 개발 도구

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.
