本文实例讲述了kNN算法python实现和简单数字识别的方法。分享给大家供大家参考。具体如下:
kNN算法算法优缺点:
优点:精度高、对异常值不敏感、无输入数据假定
缺点:时间复杂度和空间复杂度都很高
适用数据范围:数值型和标称型
算法的思路:
KNN算法(全称K最近邻算法),算法的思想很简单,简单的说就是物以类聚,也就是说我们从一堆已知的训练集中找出k个与目标最靠近的,然后看他们中最多的分类是哪个,就以这个为依据分类。
函数解析:
库函数:
tile()
如tile(A,n)就是将A重复n次
代码如下:
a = np.array([0, 1, 2])
np.tile(a, 2)
array([0, 1, 2, 0, 1, 2])
np.tile(a, (2, 2))
array([[0, 1, 2, 0, 1, 2],[0, 1, 2, 0, 1, 2]])
np.tile(a, (2, 1, 2))
array([[[0, 1, 2, 0, 1, 2]],[[0, 1, 2, 0, 1, 2]]])
b = np.array([[1, 2], [3, 4]])
np.tile(b, 2)
array([[1, 2, 1, 2],[3, 4, 3, 4]])
np.tile(b, (2, 1))
array([[1, 2],[3, 4],[1, 2],[3, 4]])`
自己实现的函数
createDataSet()生成测试数组
kNNclassify(inputX, dataSet, labels, k)分类函数
inputX 输入的参数
dataSet 训练集
labels 训练集的标号
k 最近邻的数目
代码如下:
#coding=utf-8
from numpy import *
import operator
def createDataSet():
group = array([[1.0, 0.9], [1.0, 1.0], [0.1, 0.2], [0.0, 0.1]])
labels = ['A','A','B','B']
return group,labels
#inputX表示输入向量(也就是我们要判断它属于哪一类的)
#dataSet表示训练样本
#label表示训练样本的标签
#k是最近邻的参数,选最近k个
def kNNclassify(inputX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]#计算有几个训练数据
#开始计算欧几里得距离
diffMat = tile(inputX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat ** 2
sqDistances = sqDiffMat.sum(axis=1)#矩阵每一行向量相加
distances = sqDistances ** 0.5
#欧几里得距离计算完毕
sortedDistance = distances.argsort()
classCount = {}
for i in xrange(k):
voteLabel = labels[sortedDistance[i]]
classCount[voteLabel] = classCount.get(voteLabel,0) + 1
res = max(classCount)
return res
def main():
group,labels = createDataSet()
t = kNNclassify([0,0],group,labels,3)
print t
if __name__=='__main__':
main()
kNN应用实例
手写识别系统的实现
数据集:
两个数据集:training和test。分类的标号在文件名中。像素32*32的。数据大概这个样子:
方法:
kNN的使用,不过这个距离算起来比较复杂(1024个特征),主要是要处理如何读取数据这个问题的,比较方面直接调用就可以了。
速度:
速度还是比较慢的,这里数据集是:training 2000+,test 900+(i5的CPU)
k=3的时候要32s+
代码如下:
#coding=utf-8
from numpy import *
import operator
import os
import time
def createDataSet():
group = array([[1.0, 0.9], [1.0, 1.0], [0.1, 0.2], [0.0, 0.1]])
labels = ['A','A','B','B']
return group,labels
#inputX表示输入向量(也就是我们要判断它属于哪一类的)
#dataSet表示训练样本
#label表示训练样本的标签
#k是最近邻的参数,选最近k个
def kNNclassify(inputX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]#计算有几个训练数据
#开始计算欧几里得距离
diffMat = tile(inputX, (dataSetSize,1)) - dataSet
#diffMat = inputX.repeat(dataSetSize, aixs=1) - dataSet
sqDiffMat = diffMat ** 2
sqDistances = sqDiffMat.sum(axis=1)#矩阵每一行向量相加
distances = sqDistances ** 0.5
#欧几里得距离计算完毕
sortedDistance = distances.argsort()
classCount = {}
for i in xrange(k):
voteLabel = labels[sortedDistance[i]]
classCount[voteLabel] = classCount.get(voteLabel,0) + 1
res = max(classCount)
return res
def img2vec(filename):
returnVec = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVec[0,32*i+j] = int(lineStr[j])
return returnVec
def handwritingClassTest(trainingFloder,testFloder,K):
hwLabels = []
trainingFileList = os.listdir(trainingFloder)
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
fileName = trainingFileList[i]
fileStr = fileName.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:] = img2vec(trainingFloder+'/'+fileName)
testFileList = os.listdir(testFloder)
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileName = testFileList[i]
fileStr = fileName.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vec(testFloder+'/'+fileName)
classifierResult = kNNclassify(vectorUnderTest, trainingMat, hwLabels, K)
#print classifierResult,' ',classNumStr
if classifierResult != classNumStr:
errorCount +=1
print 'tatal error ',errorCount
print 'error rate',errorCount/mTest
def main():
t1 = time.clock()
handwritingClassTest('trainingDigits','testDigits',3)
t2 = time.clock()
print 'execute ',t2-t1
if __name__=='__main__':
main()
希望本文所述对大家的Python程序设计有所帮助。

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

Python과 C는 메모리 관리 및 제어에 상당한 차이가 있습니다. 1. Python은 참조 계산 및 쓰레기 수집을 기반으로 자동 메모리 관리를 사용하여 프로그래머의 작업을 단순화합니다. 2.C는 메모리 수동 관리가 필요하므로 더 많은 제어를 제공하지만 복잡성과 오류 위험을 증가시킵니다. 선택할 언어는 프로젝트 요구 사항 및 팀 기술 스택을 기반으로해야합니다.

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

Python 또는 C를 선택할 것인지 프로젝트 요구 사항에 따라 다릅니다. 1) Python은 간결한 구문 및 풍부한 라이브러리로 인해 빠른 개발, 데이터 과학 및 스크립팅에 적합합니다. 2) C는 컴파일 및 수동 메모리 관리로 인해 시스템 프로그래밍 및 게임 개발과 같은 고성능 및 기본 제어가 필요한 시나리오에 적합합니다.

Python은 데이터 과학 및 기계 학습에 널리 사용되며 주로 단순성과 강력한 라이브러리 생태계에 의존합니다. 1) 팬더는 데이터 처리 및 분석에 사용되며, 2) Numpy는 효율적인 수치 계산을 제공하며 3) Scikit-Learn은 기계 학습 모델 구성 및 최적화에 사용되며 이러한 라이브러리는 Python을 데이터 과학 및 기계 학습에 이상적인 도구로 만듭니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경
