찾다
백엔드 개발파이썬 튜토리얼跟老齐学Python之大话题小函数(2)

上一讲和本讲的标题是“大话题小函数”,所谓大话题,就是这些函数如果溯源,都会找到听起来更高大上的东西。这种思维方式绝对我坚定地继承了中华民族的优良传统的。自从天朝的臣民看到英国人开始踢足球,一直到现在所谓某国勃起了,都一直在试图论证足球起源于该朝的前前前朝的某国时代,并且还搬出了那时候的一个叫做高俅的球星来论证,当然了,勃起的某国是挡不住该国家队在世界杯征程上的阳痿,只能用高俅来意淫一番了。这种思维方式,我是坚定地继承,因为在我成长过程中,它一直被奉为优良传统。阿Q本来是姓赵的,和赵老爷是本家,比秀才要长三辈,虽然被赵老爷打了嘴。

废话少说,书接前文,已经研究了map,下面来看reduce。

忍不住还得来点废话。不知道看官是不是听说过MapReduc,如果没有,那么Hadoop呢?如果还没有,就google一下。下面是我从维基百科上抄下来的,共赏之。

代码如下:


MapReduce是Google提出的一个软件架构,用于大规模数据集(大于1TB)的并行运算。概念“Map(映射)”和“Reduce(化简)”,及他们的主要思想,都是从函数式编程语言借来的,还有从矢量编程语言借来的特性。

不用管是不是看懂,总之又可以用开头的思想意淫一下了,原来今天要鼓捣的这个reduce还跟大数据有关呀。不管怎么样,你有梦一般的感觉就行。

reduce

回到现实,清醒一下,继续敲代码:

代码如下:


>>> reduce(lambda x,y: x+y,[1,2,3,4,5])
15

 请看官仔细观察,是否能够看出是如何运算的呢?画一个图:

还记得map是怎么运算的吗?忘了?看代码:

代码如下:


>>> list1 = [1,2,3,4,5,6,7,8,9]
>>> list2 = [9,8,7,6,5,4,3,2,1]
>>> map(lambda x,y: x+y, list1,list2)
[10, 10, 10, 10, 10, 10, 10, 10, 10]

 看官对比一下,就知道两个的区别了。原来map是上下运算,reduce是横着逐个元素进行运算。

权威的解释来自官网:

代码如下:


reduce(function, iterable[, initializer])
 
Apply function of two arguments cumulatively to the items of iterable, from left to right, so as to reduce the iterable to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates ((((1+2)+3)+4)+5). The left argument, x, is the accumulated value and the right argument, y, is the update value from the iterable. If the optional initializer is present, it is placed before the items of the iterable in the calculation, and serves as a default when the iterable is empty. If initializer is not given and iterable contains only one item, the first item is returned. Roughly equivalent to:

 

代码如下:


 def reduce(function, iterable, initializer=None):
    it = iter(iterable)
    if initializer is None:
        try:
            initializer = next(it)
        except StopIteration:   
            raise TypeError('reduce() of empty sequence with no initial value')   
    accum_value = initializer                                                                  
    for x in it:
        accum_value = function(accum_value, x)   
    return accum_value

 如果用我们熟悉的for循环来做上面reduce的事情,可以这样来做:

代码如下:


>>> lst = range(1,6)
>>> lst
[1, 2, 3, 4, 5]
>>> r = 0
>>> for i in range(len(lst)):
...     r += lst[i]
...
>>> r
15

 for普世的,reduce是简洁的。

为了锻炼思维,看这么一个问题,有两个list,a = [3,9,8,5,2],b=[1,4,9,2,6],计算:a[0]b[0]+a1b1+...的结果。

代码如下:


>>> a
[3, 9, 8, 5, 2]
>>> b
[1, 4, 9, 2, 6]

>>> zip(a,b)        #复习一下zip,下面的方法中要用到
[(3, 1), (9, 4), (8, 9), (5, 2), (2, 6)]

>>> sum(x*y for x,y in zip(a,b))    #解析后直接求和
133

>>> new_list = [x*y for x,y in zip(a,b)]    #可以看做是上面方法的分布实施
>>> #这样解析也可以:new_tuple = (x*y for x,y in zip(a,b))
>>> new_list
[3, 36, 72, 10, 12]
>>> sum(new_list)     #或者:sum(new_tuple)
133

>>> reduce(lambda sum,(x,y): sum+x*y,zip(a,b),0)    #这个方法是在耍酷呢吗?
133

>>> from operator import add,mul            #耍酷的方法也不止一个
>>> reduce(add,map(mul,a,b))
133

>>> reduce(lambda x,y: x+y, map(lambda x,y: x*y, a,b))  #map,reduce,lambda都齐全了,更酷吗?
133

 filter

filter的中文含义是“过滤器”,在python中,它就是起到了过滤器的作用。首先看官方说明:

代码如下:


filter(function, iterable)

Construct a list from those elements of iterable for which function returns true. iterable may be either a sequence, a container which supports iteration, or an iterator. If iterable is a string or a tuple, the result also has that type; otherwise it is always a list. If function is None, the identity function is assumed, that is, all elements of iterable that are false are removed.

Note that filter(function, iterable) is equivalent to [item for item in iterable if function(item)] if function is not None and [item for item in iterable if item] if function is None.

这次真的不翻译了(好像以往也没有怎么翻译呀),而且也不解释要点了。请列位务必自己阅读上面的文字,并且理解其含义。英语,无论怎么强调都是不过分的,哪怕是做乞丐,说两句英语,没准还可以讨到英镑美元呢。

通过下面代码体会:

代码如下:


>>> numbers = range(-5,5)
>>> numbers
[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]

>>> filter(lambda x: x>0, numbers)
[1, 2, 3, 4]

>>> [x for x in numbers if x>0]     #与上面那句等效
[1, 2, 3, 4]

>>> filter(lambda c: c!='i', 'qiwsir')  #能不能对应上面文档说明那句话呢?
'qwsr'                                  #“If iterable is a string or a tuple, the result also has that type;”

 至此,用两此介绍了几个小函数,这些函数在对程序的性能提高上,并没有显著或者稳定预期,但是,在代码的简洁上,是有目共睹的。有时候是可以用来秀一秀,彰显python的优雅和自己耍酷。

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Python vs. C : 주요 차이점 이해Python vs. C : 주요 차이점 이해Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python vs. C : 프로젝트를 위해 어떤 언어를 선택해야합니까?Python vs. C : 프로젝트를 위해 어떤 언어를 선택해야합니까?Apr 21, 2025 am 12:17 AM

Python 또는 C를 선택하는 것은 프로젝트 요구 사항에 따라 다릅니다. 1) 빠른 개발, 데이터 처리 및 프로토 타입 설계가 필요한 경우 Python을 선택하십시오. 2) 고성능, 낮은 대기 시간 및 근접 하드웨어 제어가 필요한 경우 C를 선택하십시오.

파이썬 목표에 도달 : 매일 2 시간의 힘파이썬 목표에 도달 : 매일 2 시간의 힘Apr 20, 2025 am 12:21 AM

매일 2 시간의 파이썬 학습을 투자하면 프로그래밍 기술을 효과적으로 향상시킬 수 있습니다. 1. 새로운 지식 배우기 : 문서를 읽거나 자습서를 시청하십시오. 2. 연습 : 코드를 작성하고 완전한 연습을합니다. 3. 검토 : 배운 내용을 통합하십시오. 4. 프로젝트 실무 : 실제 프로젝트에서 배운 것을 적용하십시오. 이러한 구조화 된 학습 계획은 파이썬을 체계적으로 마스터하고 경력 목표를 달성하는 데 도움이 될 수 있습니다.

2 시간 극대화 : 효과적인 파이썬 학습 전략2 시간 극대화 : 효과적인 파이썬 학습 전략Apr 20, 2025 am 12:20 AM

2 시간 이내에 Python을 효율적으로 학습하는 방법 : 1. 기본 지식을 검토하고 Python 설치 및 기본 구문에 익숙한 지 확인하십시오. 2. 변수, 목록, 기능 등과 같은 파이썬의 핵심 개념을 이해합니다. 3. 예제를 사용하여 마스터 기본 및 고급 사용; 4. 일반적인 오류 및 디버깅 기술을 배우십시오. 5. 목록 이해력 사용 및 PEP8 스타일 안내서와 같은 성능 최적화 및 모범 사례를 적용합니다.

Python과 C : The Hight Language 중에서 선택Python과 C : The Hight Language 중에서 선택Apr 20, 2025 am 12:20 AM

Python은 초보자 및 데이터 과학에 적합하며 C는 시스템 프로그래밍 및 게임 개발에 적합합니다. 1. 파이썬은 간단하고 사용하기 쉽고 데이터 과학 및 웹 개발에 적합합니다. 2.C는 게임 개발 및 시스템 프로그래밍에 적합한 고성능 및 제어를 제공합니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Python vs. C : 프로그래밍 언어의 비교 분석Python vs. C : 프로그래밍 언어의 비교 분석Apr 20, 2025 am 12:14 AM

Python은 데이터 과학 및 빠른 개발에 더 적합한 반면 C는 고성능 및 시스템 프로그래밍에 더 적합합니다. 1. Python Syntax는 간결하고 학습하기 쉽고 데이터 처리 및 과학 컴퓨팅에 적합합니다. 2.C는 복잡한 구문을 가지고 있지만 성능이 뛰어나고 게임 개발 및 시스템 프로그래밍에 종종 사용됩니다.

하루 2 시간 : 파이썬 학습의 잠재력하루 2 시간 : 파이썬 학습의 잠재력Apr 20, 2025 am 12:14 AM

파이썬을 배우기 위해 하루에 2 시간을 투자하는 것이 가능합니다. 1. 새로운 지식 배우기 : 목록 및 사전과 같은 1 시간 안에 새로운 개념을 배우십시오. 2. 연습 및 연습 : 1 시간을 사용하여 소규모 프로그램 작성과 같은 프로그래밍 연습을 수행하십시오. 합리적인 계획과 인내를 통해 짧은 시간에 Python의 핵심 개념을 마스터 할 수 있습니다.

Python vs. C : 학습 곡선 및 사용 편의성Python vs. C : 학습 곡선 및 사용 편의성Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

WebStorm Mac 버전

WebStorm Mac 버전

유용한 JavaScript 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전