이 튜토리얼은 Java 기초부터 실제 응용까지 빅데이터 분석 기술을 익히는 데 도움이 됩니다. Java 기본 사항(변수, 제어 흐름, 클래스 등), 빅 데이터 도구(Hadoop 생태계, Spark, Hive) 및 실제 사례(OpenFlights에서 비행 데이터 가져오기)가 포함됩니다. Hadoop을 사용하여 데이터를 읽고 처리하며 항공편 목적지에 대해 가장 빈번한 공항을 분석합니다. Spark를 사용하여 목적지까지의 최신 항공편을 드릴다운하고 찾으세요. Hive를 사용하여 데이터를 대화형으로 분석하고 각 공항의 항공편 수를 계산합니다.
Java 기초에서 실무까지: 빅 데이터 실무 분석
소개
빅 데이터 시대가 도래하면서 빅 데이터 분석 기술을 익히는 것이 중요해졌습니다. 이 튜토리얼에서는 Java의 기초부터 실용적인 빅 데이터 분석을 위해 Java를 사용하는 방법까지 안내합니다.
Java 기초
빅 데이터 분석 도구
실제 사례: Java를 사용하여 비행 데이터 분석
1단계: 데이터 가져오기
항공편 다운로드 OpenFlights 데이터세트의 데이터입니다.
2단계: Hadoop을 사용하여 데이터를 읽고 씁니다.
Hadoop 및 MapReduce를 사용하여 데이터를 읽고 처리합니다.
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class FlightStats { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "Flight Stats"); job.setJarByClass(FlightStats.class); job.setMapperClass(FlightStatsMapper.class); job.setReducerClass(FlightStatsReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); } public static class FlightStatsMapper extends Mapper<Object, Text, Text, IntWritable> { @Override public void map(Object key, Text value, Context context) throws IOException, InterruptedException { String[] line = value.toString().split(","); context.write(new Text(line[1]), new IntWritable(1)); } } public static class FlightStatsReducer extends Reducer<Text, IntWritable, Text, IntWritable> { @Override public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable value : values) { sum += value.get(); } context.write(key, new IntWritable(sum)); } } }
3단계: 추가 분석을 위해 Spark 사용
Spark DataFrame 및 SQL 쿼리를 사용하여 데이터를 분석합니다.
import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Row; import org.apache.spark.sql.SparkSession; public class FlightStatsSpark { public static void main(String[] args) { SparkSession spark = SparkSession.builder().appName("Flight Stats Spark").getOrCreate(); Dataset<Row> flights = spark.read().csv("hdfs:///path/to/flights.csv"); flights.createOrReplaceTempView("flights"); Dataset<Row> top10Airports = spark.sql("SELECT origin, COUNT(*) AS count FROM flights GROUP BY origin ORDER BY count DESC LIMIT 10"); top10Airports.show(10); } }
4단계: Hive 대화형 쿼리 사용
Hive 대화형 쿼리를 사용하여 데이터를 분석합니다.
CREATE TABLE flights (origin STRING, dest STRING, carrier STRING, dep_date STRING, dep_time STRING, arr_date STRING, arr_time STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE; LOAD DATA INPATH 'hdfs:///path/to/flights.csv' OVERWRITE INTO TABLE flights; SELECT origin, COUNT(*) AS count FROM flights GROUP BY origin ORDER BY count DESC LIMIT 10;
결론
이 튜토리얼을 통해 Java의 기본 사항과 실용적인 빅데이터 분석을 위해 Java를 사용하는 기술을 마스터했습니다. Hadoop, Spark 및 Hive를 이해하면 대규모 데이터 세트를 효율적으로 분석하고 그로부터 귀중한 통찰력을 추출할 수 있습니다.
위 내용은 실제 응용을 위한 Java 기초 소개: 빅 데이터의 실제 분석의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!