Go 동시 캐시 성능 최적화를 위한 잠금 세분성 팁: 전역 잠금: 간단한 구현, 잠금 세분성이 너무 크면 불필요한 경쟁이 발생합니다. 키 수준 잠금: 잠금 세분성은 각 키로 세분화되지만 많은 수의 잠금이 발생하고 오버헤드가 증가합니다. 샤드 잠금: 동시성과 잠금 경합 간의 균형을 유지하기 위해 캐시를 여러 개의 샤드로 나누고, 각 샤드는 별도의 잠금을 갖습니다.
Go 기능 동시 캐시를 위한 잠금 세분성 최적화 팁
Go 동시 프로그래밍에서 캐시는 일반적으로 애플리케이션 성능을 향상시키는 데 사용됩니다. 그러나 캐시의 잠금 단위가 너무 크면 불필요한 경합이 발생하고 동시성에 영향을 미칠 수 있습니다. 이 기사에서는 잠금 세분성을 최적화하여 Go 동시 캐시의 성능을 향상시키는 방법을 살펴봅니다.
잠금 세분성
잠금 세분성은 잠금으로 보호되는 데이터 범위를 나타냅니다. 캐싱 시나리오에서는 일반적으로 전체 캐시를 보호하는 전역 잠금이 있거나 캐시의 각 키에 대한 별도의 잠금이 있습니다.
전역 잠금
전역 잠금은 간단한 구현을 제공하지만 잠금 세분성이 너무 크고 여러 코루틴이 동시에 서로 다른 키에 액세스하는 경우 경쟁도 발생합니다.
키 수준 잠금
키 수준 잠금은 각 키에 대한 잠금 세분성을 줄여 여러 코루틴이 동시에 다른 키에 액세스할 수 있도록 합니다. 그러나 이로 인해 많은 잠금이 발생하고 메모리 오버헤드와 경합이 증가합니다.
샤드 잠금
샤드 잠금은 캐시를 각각 별도의 잠금 장치가 있는 여러 샤드로 나눕니다. 이는 전역 잠금과 키 수준 잠금 간의 절충안을 제공하여 일부 동시성을 유지하면서 잠금 경합을 줄입니다.
실용 사례
전역 잠금을 사용하는 다음과 같은 간단한 캐시 구현을 고려하세요.
type Cache struct { m map[string]interface{} mu sync.Mutex } func (c *Cache) Get(key string) (interface{}, bool) { c.mu.Lock() defer c.mu.Unlock() return c.m[key], true }
샤드 잠금을 사용하면 잠금 세분성을 최적화할 수 있습니다.
type Cache struct { shards []*sync.Mutex data []map[string]interface{} } func NewCache(numShards int) *Cache { shards := make([]*sync.Mutex, numShards) data := make([]map[string]interface{}, numShards) for i := 0; i < numShards; i++ { shards[i] = &sync.Mutex{} data[i] = make(map[string]interface{}) } return &Cache{ shards: shards, data: data, } } func (c *Cache) Get(key string) (interface{}, bool) { shardIndex := hash(key) % len(c.shards) c.shards[shardIndex].Lock() defer c.shards[shardIndex].Unlock() return c.data[shardIndex][key], true }
캐시를 여러 샤드로 나누어 각 샤드의 크기를 줄입니다. 경쟁을 잠그고 동시성을 향상시킵니다.
Go 동시 캐시를 최적화하려면 애플리케이션의 로드 패턴과 액세스 패턴을 기반으로 적절한 잠금 세분성을 선택하는 것이 중요합니다.
위 내용은 Golang 함수 동시 캐시에 대한 세분성 최적화 기술 잠금의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Golang은 실제 응용 분야에서 탁월하며 단순성, 효율성 및 동시성으로 유명합니다. 1) 동시 프로그래밍은 Goroutines 및 채널을 통해 구현됩니다. 2) Flexible Code는 인터페이스 및 다형성을 사용하여 작성됩니다. 3) NET/HTTP 패키지로 네트워크 프로그래밍 단순화, 4) 효율적인 동시 크롤러 구축, 5) 도구 및 모범 사례를 통해 디버깅 및 최적화.

GO의 핵심 기능에는 쓰레기 수집, 정적 연결 및 동시성 지원이 포함됩니다. 1. Go Language의 동시성 모델은 고루틴 및 채널을 통한 효율적인 동시 프로그래밍을 실현합니다. 2. 인터페이스 및 다형성은 인터페이스 방법을 통해 구현되므로 서로 다른 유형을 통일 된 방식으로 처리 할 수 있습니다. 3. 기본 사용법은 기능 정의 및 호출의 효율성을 보여줍니다. 4. 고급 사용에서 슬라이스는 동적 크기 조정의 강력한 기능을 제공합니다. 5. 레이스 조건과 같은 일반적인 오류는 Getest-race를 통해 감지 및 해결할 수 있습니다. 6. 성능 최적화는 sync.pool을 통해 개체를 재사용하여 쓰레기 수집 압력을 줄입니다.

Go Language는 효율적이고 확장 가능한 시스템을 구축하는 데 잘 작동합니다. 장점은 다음과 같습니다. 1. 고성능 : 기계 코드로 컴파일, 빠른 달리기 속도; 2. 동시 프로그래밍 : 고어 라틴 및 채널을 통한 멀티 태스킹 단순화; 3. 단순성 : 간결한 구문, 학습 및 유지 보수 비용 절감; 4. 크로스 플랫폼 : 크로스 플랫폼 컴파일, 쉬운 배포를 지원합니다.

SQL 쿼리 결과의 정렬에 대해 혼란스러워합니다. SQL을 학습하는 과정에서 종종 혼란스러운 문제가 발생합니다. 최근 저자는 "Mick-SQL 기본 사항"을 읽고 있습니다.

기술 스택 컨버전스와 기술 선택의 관계, 소프트웨어 개발에서 기술 스택의 선택 및 관리는 매우 중요한 문제입니다. 최근에 일부 독자들은 ...

골란 ...

GO 언어로 세 가지 구조를 비교하고 처리하는 방법. GO 프로그래밍에서는 때때로 두 구조의 차이점을 비교하고 이러한 차이점을 ...에 적용해야합니다.

GO에서 전 세계적으로 설치된 패키지를 보는 방법? Go Language로 발전하는 과정에서 Go는 종종 사용합니다 ...


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.
