찾다
기술 주변기기일체 포함선형 대수학을 잘 배우고 추천 시스템을 사용해 보세요.

선형 대수학을 잘 배우고 추천 시스템을 사용해 보세요.

Mar 19, 2024 pm 02:52 PM
틱톡일체 포함블록체인대규모 언어 모델matmat

ㅋㅋㅋ

Python/Rust/Go

잠깐만요 탄생 일련의 새로운 프로그래밍 언어와 정보 검색 기술의 활발한 발전도 하이라이트입니다. 인터넷 최초의 순수기술 비즈니스 모델은 구글과 바이두로 대표되는 검색엔진 기술이었다. 그러나 모두가 기대하지 않는 것은 추천 시스템이 탄생한 지 오래되었다는 점이다. 이르면 1992년 , 인류 역사상 최초의 추천 시스템이 논문 형태로 발표되었습니다. 이때는 아직 구글과 바이두가 탄생하지 않은 때였습니다.

은 검색 엔진처럼 꼭 필요한 요소로 간주되지 않으며, 많은 유니콘이 곧 탄생했습니다. 추천 시스템을 핵심 기술로 하는 기술 회사는 2010 시대에 Toutiao와 Douyin이 등장하기 전까지는 나타나지 않을 것입니다. Toutiao와 Douyin이 추천 시스템에서 가장 성공적인 대표 기업이 되었다는 것은 의심의 여지가 없습니다. 1세대 정보검색기술 검색엔진이 미국인들이 선점했다면, 2세대 정보검색기술 추천시스템은 중국이 확고히 장악하고 있는 셈이다. 그리고 이제 우리는 3세대 정보 검색 기술인 —— 대규모 언어 모델 기반 정보 검색을 접하게 됩니다. 현재 퍼스트무버는 유럽과 미국이지만, 현재 중국과 미국이 함께 나아가고 있다. 최근 몇 년간, 추천 시스템 분야의 권위있는 회의

선형 대수학을 잘 배우고 추천 시스템을 사용해 보세요.

은 자주 권장 권장 사항 ( secientatement wesomeation

)에 대한 최고의 종이 상을 자주 수여했습니다. 이는 이 분야가 수직적 응용에 점점 더 많은 관심을 기울이고 있음을 보여줍니다. 이렇게 중요한 추천 시스템의 수직적 적용이 있지만 아직까지는 큰 파장을 일으키지 못했습니다. 이 분야는

CARS라고 불리는 시나리오 기반 추천(Context-aware Recommendation)입니다. 가끔 CARS 에서 Workshop을 볼 수 있지만 이러한 Workshop 에서는 매년 10 개 이상의 논문을 생산하지 않으며 이는 매우 적은 수입니다. CARS 무엇에 사용할 수 있나요? 우선 CARS 는 이미 버거킹 같은 패스트푸드 회사에서 사용되고 있습니다. 또한, 사용자가 운전하는 동안의 장면을 바탕으로 사용자에게 음악을 추천할 수도 있습니다. 또한, 기상 상황에 따라 사용자에게 여행 계획을 추천하는 것이 가능한지 생각해 볼 수 있습니다. 아니면 사용자의 신체 상태에 따라 식사를 추천하시겠습니까? 사실, 상상력을 마음껏 발휘하는 한, 우리는 언제나 CARS 에 대한 다양한 실용적인 응용 프로그램을 찾을 수 있습니다.

그러나

CARS 이 널리 사용되는데 왜 논문을 출판하는 사람이 그렇게 적습니까? 그 이유는 간단합니다. CARS 에 사용할 수 있는 공개 데이터 세트가 거의 없기 때문입니다. 현재 CARS 의 최고의 공개 데이터세트는 슬로베니아의

LDOS-CoMoDa

데이터세트입니다. 이 외에도 다른 데이터 세트를 찾기가 어렵습니다. LDOS-CoMoDa 는 영화 감상 시 사용자 장면 데이터를 설문조사 형태로 제공하여 연구자들이 CARS 연구에 참여할 수 있도록 해줍니다. 데이터 공개 시점은 2012년 ~2013년 정도이지만 현재 이 데이터 수집에 대해 아는 사람은 거의 없습니다. 본론으로 돌아가서, 이 글에서는 주로 MatMat / MovieMat 알고리즘과 PowerMat 알고리즘을 소개합니다. 이러한 알고리즘은 CARS 문제를 해결하기 위한 강력한 도구입니다. 먼저

MatMat

CARS 문제를 어떻게 정의하는지 살펴보겠습니다. 먼저 사용자 평가 행렬을 재정의하고 사용자 평가 행렬의 각 평가 값을 정사각형 행렬로 바꿉니다. 정사각형 행렬의 대각선 요소는 원래 점수 값이고 비대각선 요소는 장면 정보입니다. 아래에서 MatMat 알고리즘의 손실 함수를 정의합니다. 이는 고전적인 행렬 분해 손실 함수를 수정하고 다음과 같은 형식을 갖습니다.

여기서 U V 은 모두 행렬입니다. 이러한 방식으로 원래 행렬 분해에서 벡터 내적을 변경합니다. 벡터 점 곱셈을 행렬 곱셈으로 바꿉니다. 다음 예를 들어보겠습니다.

선형 대수학을 잘 배우고 추천 시스템을 사용해 보세요.

MovieLens Small Dataset 에 대한 성능 비교 실험을 수행한 결과 다음과 같은 결과를 얻었습니다.

선형 대수학을 잘 배우고 추천 시스템을 사용해 보세요.보시다시피

MatMat 알고리즘의 효과는 기존 행렬 분해 알고리즘보다 우수합니다. 추천 시스템의 공정성을 다시 확인해 보겠습니다.

선형 대수학을 잘 배우고 추천 시스템을 사용해 보세요.공정성 지표 측면에서

MatMat 이 여전히 동일하게 우수한 성능을 보이는 것을 볼 수 있습니다. MatMat의 해결 과정은 상대적으로 복잡합니다. 알고리즘을 발명한 저자도 파생 과정을 논문에 쓰지 않았습니다. 하지만 속담처럼 선형대수를 잘 배우면 전 세계를 여행하는 것이 두렵지 않을 것입니다. 똑똑한 독자라면 관련 공식을 도출하고 이 알고리즘을 구현할 수 있을 것이라고 믿습니다. Almatmat 알고리즘 용지의 원래 주소는 다음 링크에서 찾을 수 있습니다. 본 논문은 국제학술대회 IEEE ICISCAE 2021 최우수논문보고서상입니다. MatMat 알고리즘은 장면 기반 영화 추천 분야에 적용됩니다. 이 알고리즘의 영화 인스턴스 이름은 MovieMat입니다. MovieMat 의 평가 매트릭스는 다음과 같이 정의됩니다.

그런 다음 저자는 LDOS-CoMoDa 에서

에 대한 비교 실험을 수행했습니다. 데이터 세트, 선형 대수학을 잘 배우고 추천 시스템을 사용해 보세요.

MovieMat

은 기존 행렬 분해보다 훨씬 높은 성능을 달성합니다. 공정성 평가 결과를 살펴보겠습니다.

선형 대수학을 잘 배우고 추천 시스템을 사용해 보세요.

공정성 측면에서 고전적인 행렬 분해는 MovieMat 보다 더 나은 결과를 얻었습니다. MovieMat 의 원본 논문은 다음 링크에서 확인할 수 있습니다:

선형 대수학을 잘 배우고 추천 시스템을 사용해 보세요.https://www.php.cn/link/f4ec6380c50a68a7c35d109bec48aebf

. 우리는 가끔 이런 문제에 직면합니다. 새로운 위치에 도착했는데 장면 데이터만 있고 사용자 평가 데이터가 없다면 어떻게 해야 할까요? 상관없어요, Ratidar Technologies LLC(Beijing Daping Qizhi Network Technology Co., Ltd. ) 는 제로샷 학습을 기반으로 한 CARS 알고리즘인

PowerMat을 발명했습니다. PowerMat 의 원본 논문은 다음 링크에서 보실 수 있습니다: https://www.php.cn/link/1514f187930072575629709336826443 . PowerMat 의 발명가는 MAP DotMat을 빌려 다음 MAP

함수를 정의했습니다. 어디 U 사용자는 특징 벡터, V 는 항목 특징 벡터,

R

선형 대수학을 잘 배우고 추천 시스템을 사용해 보세요.은 사용자 평점 값,

C 은 장면 변수입니다. 구체적으로 다음 공식을 얻습니다.

선형 대수학을 잘 배우고 추천 시스템을 사용해 보세요.

이 문제를 해결하기 위해 확률적 경사하강법을 사용하면 다음 공식을 얻습니다.

선형 대수학을 잘 배우고 추천 시스템을 사용해 보세요.

관찰을 통해 이 공식 집합에는 입력 데이터 관련 변수가 없다는 것을 알았으므로 PowerMat 은 시나리오에만 관련된 제로샷 학습 알고리즘입니다. 이 알고리즘은 다음과 같은 시나리오에 적용될 수 있습니다. 관광객은 특정 장소로 ​​여행을 계획하지만 그곳에 가본 적이 없으므로 날씨와 같은 장면 데이터만 가지고 있습니다. PowerMat 을 사용하여 체크인 명소를 추천할 수 있습니다. 관광객 등

다음은 PowerMat 과 다른 알고리즘 간의 비교 데이터입니다.

선형 대수학을 잘 배우고 추천 시스템을 사용해 보세요.

이 사진을 통해 PowerMat MovieMat를 찾습니다. flag 드럼 소리가 꽤, 아님 비교 가능하며 결과는 기존 행렬 분해 알고리즘보다 낫습니다. 아래 그림은 공정성 측면에서도 지수 , PowerMat 가 여전히 강력한 성능을 발휘하고 있음을 보여줍니다.

선형 대수학을 잘 배우고 추천 시스템을 사용해 보세요.

비교 실험을 통해 PowerMat 이 우수하다는 것을 확인했습니다 자동차 알고리즘.

인터넷 데이터 엔지니어들은 종종 데이터가 무엇보다 중요하다고 말합니다. 그리고 2010년 시대에는 데이터에 대해 낙관적이고 알고리즘에 대해 약세를 보이는 강한 추세가 인터넷에 있었습니다. CARS 가 좋은 예입니다. 대다수의 사람들이 관련 데이터에 접근할 수 없기 때문에 이 분야의 발전은 크게 제한되었습니다. LDOS-CoMoDa 데이터 수집을 공개한 슬로베니아 연구원들에게 감사드립니다. 우리는 이 분야를 발전시킬 수 있는 기회를 얻었습니다. 또한 점점 더 많은 사람들이 cars, cars 착륙 및 cars ...

에 대해 걱정하길 바랍니다.

🎜🎜🎜🎜 🎜Funplus 🎜🎜인공지능 연구실장입니다. 그는 🎜🎜ThoughtWorks🎜🎜, Douban, Baidu, Sina 및 기타 회사에서 기술 및 기술 임원직을 역임했습니다. 🎜🎜13 🎜🎜년 동안 인터넷 기업, 금융 기술, 게임 및 기타 기업에서 근무한 그는 인공 지능, 컴퓨터 그래픽, 블록체인 등 분야에 대한 깊은 통찰력과 풍부한 경험을 가지고 있습니다. 국제학술대회 및 저널에 🎜🎜42 🎜🎜 논문 게재, 🎜🎜IEEE SMI 2008 🎜🎜Best Paper Award, 🎜🎜ICBDT 2020 / IEEE ICISCAE 2021 / AIBT 2023 / ICSIM 2024 🎜🎜Best 논문보고서상. 🎜🎜🎜🎜🎜🎜

위 내용은 선형 대수학을 잘 배우고 추천 시스템을 사용해 보세요.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 51CTO.COM에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
마찰에서 흐름까지 : AI가 법적 작업을 재구성하는 방법마찰에서 흐름까지 : AI가 법적 작업을 재구성하는 방법May 09, 2025 am 11:29 AM

법률 기술 혁명은 법률 전문가가 AI 솔루션을 적극적으로 수용하도록 추진력을 얻고 있습니다. 수동 저항은 더 이상 경쟁력을 유지하려는 사람들에게는 실행 가능한 옵션이 아닙니다. 기술 채택이 중요한 이유는 무엇입니까? 법률 전문가

이것이 Ai가 당신을 생각하고 당신에 대해 알고있는 것입니다.이것이 Ai가 당신을 생각하고 당신에 대해 알고있는 것입니다.May 09, 2025 am 11:24 AM

많은 사람들은 AI와의 상호 작용이 익명이며 인간의 의사 소통과는 대조적이라고 가정합니다. 그러나 AI는 모든 채팅 중에 사용자를 적극적으로 프로파일 링합니다. 모든 프롬프트, 모든 단어는 분석 및 분류됩니다. AI Revo 의이 중요한 측면을 살펴 보겠습니다

번성하고 준비된 기업 문화를 구축하기위한 7 단계번성하고 준비된 기업 문화를 구축하기위한 7 단계May 09, 2025 am 11:23 AM

성공적인 인공 지능 전략은 강력한 기업 문화 지원과 분리 될 수 없습니다. Peter Drucker가 말했듯이 비즈니스 운영은 사람들에게 달려 있으며 인공 지능의 성공도 마찬가지입니다. 인공 지능을 적극적으로 수용하는 조직의 경우 AI에 적응하는 기업 문화를 구축하는 것이 중요하며 AI 전략의 성공 또는 실패조차 결정합니다. West Monroe는 최근에 번성하는 AI 친화적 인 기업 문화를 구축하기위한 실용적인 가이드를 발표했으며 다음은 다음과 같습니다. 1. AI의 성공 모델을 명확하게 설명하십시오. 우선, AI가 비즈니스를 강화할 수있는 방법에 대한 명확한 비전이 있어야합니다. 이상적인 AI 운영 문화는 인간과 AI 시스템 간의 작업 프로세스를 자연스럽게 통합 할 수 있습니다. AI는 특정 작업에 능숙하지만 인간은 창의성과 판단에 능숙합니다.

Netflix New Scroll, Meta AI AI의 게임 체인저, Neuralink는 85 억 달러에 달했습니다.Netflix New Scroll, Meta AI AI의 게임 체인저, Neuralink는 85 억 달러에 달했습니다.May 09, 2025 am 11:22 AM

메타 업그레이드 AI 보조 응용 프로그램 및 웨어러블 AI의 시대가오고 있습니다! ChatGpt와 경쟁하도록 설계된이 앱은 텍스트, 음성 상호 작용, 이미지 생성 및 웹 검색과 같은 표준 AI 기능을 제공하지만 이제 지리적 위치 기능을 처음으로 추가했습니다. 이것은 메타 AI가 자신의 위치와 질문에 대답 할 때보고있는 내용을 알고 있음을 의미합니다. 귀하의 관심사, 위치, 프로필 및 활동 정보를 사용하여 이전에는 불가능한 최신 상황 정보를 제공합니다. 이 앱은 또한 실시간 번역을 지원하여 Ray-Ban 안경의 AI 경험을 완전히 바꾸고 유용성을 크게 향상 시켰습니다. 외국 영화에 대한 관세 부과는 미디어와 문화에 대한 권력의 알몸 운동입니다. 구현되면 AI 및 가상 프로덕션으로 가속됩니다.

오늘이 단계를 수행하여 AI 사이버 범죄로부터 자신을 보호하십시오.오늘이 단계를 수행하여 AI 사이버 범죄로부터 자신을 보호하십시오.May 09, 2025 am 11:19 AM

인공 지능은 사이버 범죄 분야를 혁신하여 새로운 방어 기술을 배우도록 강요하고 있습니다. 사이버 범죄자들은 ​​깊은 위조 및 지능형 사이버 공격과 같은 강력한 인공 지능 기술을 사용하여 전례없는 규모로 사기 및 파괴를 사용하고 있습니다. 글로벌 비즈니스의 87%가 지난해 AI 사이버 범죄를 목표로 한 것으로보고되었습니다. 그렇다면이 현명한 범죄의 물결의 희생자가되는 것을 어떻게 피할 수 있습니까? 개인 및 조직 차원에서 위험을 식별하고 보호 조치를 취하는 방법을 살펴 보겠습니다. 사이버 범죄자가 인공 지능을 사용하는 방법 기술이 발전함에 따라 범죄자들은 ​​개인, 기업 및 정부를 공격 할 수있는 새로운 방법을 지속적으로 찾고 있습니다. 인공 지능의 광범위한 사용은 최신 측면 일 수 있지만 잠재적 인 피해는 전례가 없습니다. 특히 인공 지능

공생 춤 : 인공 및 자연 인식의 고리 탐색공생 춤 : 인공 및 자연 인식의 고리 탐색May 09, 2025 am 11:13 AM

인공 지능 (AI)과 인간 지능 (NI) 사이의 복잡한 관계는 피드백 루프로 가장 잘 이해됩니다. 인간은 AI를 만들어 인간 활동에 의해 생성 된 데이터에 대해 인간 능력을 향상 시키거나 복제합니다. 이 ai

AI의 가장 큰 비밀 - 제작자는 이해하지 못하고 전문가가 분할AI의 가장 큰 비밀 - 제작자는 이해하지 못하고 전문가가 분할May 09, 2025 am 11:09 AM

최첨단 AI 모델을 둘러싼 이해의 부족을 강조한 Anthropic의 최근 진술은 전문가들 사이에서 격렬한 논쟁을 불러 일으켰습니다. 이 불투명도는 진정한 기술 위기입니까, 아니면 단순히 더 많은 소프로가는 길에 일시적인 장애물입니까?

Sarvam AI의 Bulbul-V2 : 인도 최고의 TTS 모델Sarvam AI의 Bulbul-V2 : 인도 최고의 TTS 모델May 09, 2025 am 10:52 AM

인도는 풍부한 언어 태피스트리를 가진 다양한 국가로 지역 간의 원활한 의사 소통을 지속적으로 도전합니다. 그러나 Sarvam의 Bulbul-V2

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전