찾다
기술 주변기기일체 포함LLaMA-2-7B 수학 능력의 상한이 97.7%에 도달했다고요? Xwin-Math는 합성 데이터로 잠재력을 발휘합니다

합성 데이터는 대형 모델의 수학적 추론 잠재력을 계속해서 열어줍니다!

수학적 문제 해결 능력은 항상 언어 모델의 지능 수준을 나타내는 중요한 지표로 간주되어 왔습니다. 일반적으로 매우 큰 모델이나 광범위한 수학적 사전 학습을 거친 모델만이 수학적 문제를 잘 수행할 수 있는 기회를 갖습니다.

최근 Swin-Transformer 팀이 만들고 Xi'an Jiaotong University, 중국 과학 기술 대학교, Tsinghua University 및 Microsoft Research Asia의 학자들이 공동으로 완성한 Xwin 연구 작업은 이러한 인식을 뒤집고 다음과 같은 사실을 드러냈습니다. 일반적인 사전 학습을 통해 7B(즉, 70억 개의 매개변수) 규모의 언어 모델(LLaMA-2-7B)은 수학적 문제를 해결하는 데 강력한 잠재력을 보였으며 합성 데이터를 기반으로 감독된 미세 조정 방법을 사용하여 모델을 점점 더 많이 만들 수 있습니다. 효율적입니다. 수학적 능력을 꾸준히 자극합니다.

이 연구는 "Common 7B Language Models 이미 강력한 수학 기능을 보유하고 있습니다"라는 제목으로 arXiv에 게시되었습니다.

LLaMA-2-7B 수학 능력의 상한이 97.7%에 도달했다고요? Xwin-Math는 합성 데이터로 잠재력을 발휘합니다

  • 문서 링크: https://arxiv.org/pdf/2403.04706.pdf
  • 코드 링크: https://github.com/Xwin-LM/Xwin-LM

연구팀은 먼저 7.5K 데이터만 사용하여 LLaMA-2-7B 모델 지침을 미세 조정한 다음 GSM8K 및 MATH에서 모델의 성능을 평가했습니다. 실험 결과, 테스트 세트의 각 질문에 대해 생성된 256개의 답변 중에서 가장 좋은 답변을 선택할 때 테스트 정확도가 각각 97.7%, 72.0%까지 높은 것으로 나타났습니다. 이 결과는 일반적인 사전 훈련에서도 7B 수준임을 보여줍니다. 작은 모델이라도 고품질 답변을 생성할 수 있는 잠재력이 있다는 발견은 강력한 수학적 추론의 잠재력이 대규모 및 수학적으로 관련된 사전 훈련된 모델에만 국한되지 않는다는 이전 견해에 도전합니다.

LLaMA-2-7B 수학 능력의 상한이 97.7%에 도달했다고요? Xwin-Math는 합성 데이터로 잠재력을 발휘합니다

그러나 연구에서는 강력한 수학적 추론 잠재력에도 불구하고 현재 언어 모델의 주요 문제점은 고유한 수학적 능력을 지속적으로 자극하기 어렵다는 점을 지적합니다. 예를 들어, 이전 실험에서 질문당 하나의 생성된 답변만 고려한 경우 GSM8K 및 MATH 벤치마크의 정확도는 각각 49.5%와 7.9%로 떨어집니다. 이는 모델의 수학적 기능이 불안정하다는 것을 반영합니다. 연구팀은 이 문제를 해결하기 위해 SFT(Supervised Fine-Tuning) 데이터 세트를 확장하는 방법을 채택했으며, SFT 데이터가 증가함에 따라 정답 생성에 대한 모델의 신뢰도가 크게 향상되는 것을 확인했습니다.

연구에서는 합성 데이터를 사용하면 SFT 데이터 세트를 효과적으로 확대할 수 있으며 이 방법은 실제 데이터와 거의 비슷하다고 언급했습니다. 연구팀은 GPT-4 Turbo API를 사용해 합성 수학 문제와 문제 해결 프로세스를 생성하고, 프롬프트 단어에 대한 간단한 검증을 통해 문제의 품질을 보장했습니다. 이 방법을 통해 팀은 SFT 데이터 세트를 7.5K에서 약 100만 샘플로 성공적으로 확장하여 거의 완벽한 스케일링 법칙을 달성했습니다. 그 결과 Xwin-Math-7B 모델은 GSM8K와 MATH에서 각각 82.6%와 40.6%의 정확도를 달성하여 이전 SOTA 모델을 크게 능가하고 일부 70B 모델도 능가하여 비약적인 개선을 달성했습니다. Xwin-Math-70B 모델은 MATH 평가 세트에서 52.8%의 결과를 달성하여 GPT-4의 초기 버전을 크게 능가했습니다. LLaMA 시리즈 기본 모델을 기반으로 한 연구가 MATH에서 GPT-4를 능가한 것은 이번이 처음입니다.

LLaMA-2-7B 수학 능력의 상한이 97.7%에 도달했다고요? Xwin-Math는 합성 데이터로 잠재력을 발휘합니다

연구원들은 모델이 정답(모델의 잠재적인 수학적 능력을 나타냄)을 출력할 수 있는지 여부와 N 중 정답 비율을 평가하기 위해 Pass@N 및 PassRatio@N 평가 지표도 정의했습니다. 모델의 출력 규모(모델의 수학적 기능의 안정성을 나타냄) SFT 데이터의 양이 적을 때 모델의 Pass@256은 이미 매우 높습니다. SFT 데이터의 규모를 더 확장하면 모델의 Pass@256은 거의 증가하지 않지만 PassRatio@256은 크게 증가합니다. 이는 합성 데이터를 기반으로 한 감독 미세 조정이 모델의 수학적 기능의 안정성을 향상시키는 효과적인 방법임을 보여줍니다.

LLaMA-2-7B 수학 능력의 상한이 97.7%에 도달했다고요? Xwin-Math는 합성 데이터로 잠재력을 발휘합니다

또한 이 연구는 다양한 추론 복잡성 및 오류 유형에서 확장 동작에 대한 통찰력을 제공합니다. 예를 들어, SFT 데이터 세트의 크기가 증가함에 따라 수학적 문제를 해결하는 모델의 정확도는 추론 단계 수와 거듭제곱 관계를 따릅니다. 훈련 샘플에서 긴 추론 단계의 비율을 늘리면 어려운 문제를 해결하는 모델의 정확도가 크게 향상될 수 있습니다. 동시에, 연구에서는 계산 오류가 추론 오류보다 완화하기 쉽다는 사실도 발견했습니다.

LLaMA-2-7B 수학 능력의 상한이 97.7%에 도달했다고요? Xwin-Math는 합성 데이터로 잠재력을 발휘합니다

LLaMA-2-7B 수학 능력의 상한이 97.7%에 도달했다고요? Xwin-Math는 합성 데이터로 잠재력을 발휘합니다

모델의 수학적 추론 일반화 능력을 보여주는 헝가리 고등학교 수학 시험에서도 Xwin-Math가 65%를 기록해 GPT-4에 이어 2위를 기록했습니다. 이는 연구에서 데이터를 합성한 방식이 평가세트에 크게 과적합되지 않았으며 좋은 일반화 능력을 보여주었다는 것을 보여준다.

LLaMA-2-7B 수학 능력의 상한이 97.7%에 도달했다고요? Xwin-Math는 합성 데이터로 잠재력을 발휘합니다

LLaMA-2-7B 수학 능력의 상한이 97.7%에 도달했다고요? Xwin-Math는 합성 데이터로 잠재력을 발휘합니다

이 연구는 SFT 데이터 확장에 있어 합성 데이터의 효율성을 보여줄 뿐만 아니라 수학적 추론 능력에서 대규모 언어 모델 연구에 대한 새로운 관점을 제공합니다. 연구팀은 자신들의 작업이 이 분야의 미래 탐구와 발전을 위한 기반을 마련했다고 밝혔으며, 인공지능을 활용해 수학 문제 해결에서 더 큰 돌파구를 마련할 수 있기를 기대했습니다. 인공지능 기술이 지속적으로 발전함에 따라 AI가 수학 분야에서 더욱 뛰어난 성능을 발휘하고 인간이 복잡한 수학 문제를 해결하는 데 더 많은 도움을 제공할 것이라고 기대할 이유가 있습니다.

이 기사에는 절제 실험 결과와 데이터 합성 방법의 기타 평가 지표도 포함되어 있습니다. 자세한 내용은 전문을 참조하세요.

위 내용은 LLaMA-2-7B 수학 능력의 상한이 97.7%에 도달했다고요? Xwin-Math는 합성 데이터로 잠재력을 발휘합니다의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 机器之心에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
4090生成器:与A100平台相比,token生成速度仅低于18%,上交推理引擎赢得热议4090生成器:与A100平台相比,token生成速度仅低于18%,上交推理引擎赢得热议Dec 21, 2023 pm 03:25 PM

PowerInfer提高了在消费级硬件上运行AI的效率上海交大团队最新推出了超强CPU/GPULLM高速推理引擎PowerInfer。PowerInfer和llama.cpp都在相同的硬件上运行,并充分利用了RTX4090上的VRAM。这个推理引擎速度有多快?在单个NVIDIARTX4090GPU上运行LLM,PowerInfer的平均token生成速率为13.20tokens/s,峰值为29.08tokens/s,仅比顶级服务器A100GPU低18%,可适用于各种LLM。PowerInfer与

思维链CoT进化成思维图GoT,比思维树更优秀的提示工程技术诞生了思维链CoT进化成思维图GoT,比思维树更优秀的提示工程技术诞生了Sep 05, 2023 pm 05:53 PM

要让大型语言模型(LLM)充分发挥其能力,有效的prompt设计方案是必不可少的,为此甚至出现了promptengineering(提示工程)这一新兴领域。在各种prompt设计方案中,思维链(CoT)凭借其强大的推理能力吸引了许多研究者和用户的眼球,基于其改进的CoT-SC以及更进一步的思维树(ToT)也收获了大量关注。近日,苏黎世联邦理工学院、Cledar和华沙理工大学的一个研究团队提出了更进一步的想法:思维图(GoT)。让思维从链到树到图,为LLM构建推理过程的能力不断得到提升,研究者也通

复旦NLP团队发布80页大模型Agent综述,一文纵览AI智能体的现状与未来复旦NLP团队发布80页大模型Agent综述,一文纵览AI智能体的现状与未来Sep 23, 2023 am 09:01 AM

近期,复旦大学自然语言处理团队(FudanNLP)推出LLM-basedAgents综述论文,全文长达86页,共有600余篇参考文献!作者们从AIAgent的历史出发,全面梳理了基于大型语言模型的智能代理现状,包括:LLM-basedAgent的背景、构成、应用场景、以及备受关注的代理社会。同时,作者们探讨了Agent相关的前瞻开放问题,对于相关领域的未来发展趋势具有重要价值。论文链接:https://arxiv.org/pdf/2309.07864.pdfLLM-basedAgent论文列表:

吞吐量提升5倍,联合设计后端系统和前端语言的LLM接口来了吞吐量提升5倍,联合设计后端系统和前端语言的LLM接口来了Mar 01, 2024 pm 10:55 PM

大型语言模型(LLM)被广泛应用于需要多个链式生成调用、高级提示技术、控制流以及与外部环境交互的复杂任务。尽管如此,目前用于编程和执行这些应用程序的高效系统却存在明显的不足之处。研究人员最近提出了一种新的结构化生成语言(StructuredGenerationLanguage),称为SGLang,旨在改进与LLM的交互性。通过整合后端运行时系统和前端语言的设计,SGLang使得LLM的性能更高、更易控制。这项研究也获得了机器学习领域的知名学者、CMU助理教授陈天奇的转发。总的来说,SGLang的

大模型也有小偷?为保护你的参数,上交大给大模型制作「人类可读指纹」大模型也有小偷?为保护你的参数,上交大给大模型制作「人类可读指纹」Feb 02, 2024 pm 09:33 PM

将不同的基模型象征为不同品种的狗,其中相同的「狗形指纹」表明它们源自同一个基模型。大模型的预训练需要耗费大量的计算资源和数据,因此预训练模型的参数成为各大机构重点保护的核心竞争力和资产。然而,与传统软件知识产权保护不同,对预训练模型参数盗用的判断存在以下两个新问题:1)预训练模型的参数,尤其是千亿级别模型的参数,通常不会开源。预训练模型的输出和参数会受到后续处理步骤(如SFT、RLHF、continuepretraining等)的影响,这使得判断一个模型是否基于另一个现有模型微调得来变得困难。无

FATE 2.0发布:实现异构联邦学习系统互联FATE 2.0发布:实现异构联邦学习系统互联Jan 16, 2024 am 11:48 AM

FATE2.0全面升级,推动隐私计算联邦学习规模化应用FATE开源平台宣布发布FATE2.0版本,作为全球领先的联邦学习工业级开源框架。此次更新实现了联邦异构系统之间的互联互通,持续增强了隐私计算平台的互联互通能力。这一进展进一步推动了联邦学习与隐私计算规模化应用的发展。FATE2.0以全面互通为设计理念,采用开源方式对应用层、调度、通信、异构计算(算法)四个层面进行改造,实现了系统与系统、系统与算法、算法与算法之间异构互通的能力。FATE2.0的设计兼容了北京金融科技产业联盟的《金融业隐私计算

220亿晶体管,IBM机器学习专用处理器NorthPole,能效25倍提升220亿晶体管,IBM机器学习专用处理器NorthPole,能效25倍提升Oct 23, 2023 pm 03:13 PM

IBM再度发力。随着AI系统的飞速发展,其能源需求也在不断增加。训练新系统需要大量的数据集和处理器时间,因此能耗极高。在某些情况下,执行一些训练好的系统,智能手机就能轻松胜任。但是,执行的次数太多,能耗也会增加。幸运的是,有很多方法可以降低后者的能耗。IBM和英特尔已经试验过模仿实际神经元行为设计的处理器。IBM还测试了在相变存储器中执行神经网络计算,以避免重复访问RAM。现在,IBM又推出了另一种方法。该公司的新型NorthPole处理器综合了上述方法的一些理念,并将其与一种非常精简的计算运行

制作莫比乌斯环,最少需要多长纸带?50年来的谜题被解开了制作莫比乌斯环,最少需要多长纸带?50年来的谜题被解开了Oct 07, 2023 pm 06:17 PM

自己动手做过莫比乌斯带吗?莫比乌斯带是一种奇特的数学结构。要构造一个这样美丽的单面曲面其实非常简单,即使是小孩子也可以轻松完成。你只需要取一张纸带,扭曲一次,然后将两端粘在一起。然而,这样容易制作的莫比乌斯带却有着复杂的性质,长期吸引着数学家们的兴趣。最近,研究人员一直被一个看似简单的问题困扰着,那就是关于制作莫比乌斯带所需纸带的最短长度?布朗大学RichardEvanSchwartz谈到,对于莫比乌斯带来说,这个问题没有解决,因为它们是「嵌入的」而不是「浸入的」,这意味着它们不会相互渗透或自我

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전

PhpStorm 맥 버전

PhpStorm 맥 버전

최신(2018.2.1) 전문 PHP 통합 개발 도구

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경