찾다
백엔드 개발파이썬 튜토리얼초보자를 위한 Python 기계 학습 튜토리얼: 첫 번째 기계 학습 모델을 단계별로 구축

초보자를 위한 Python 기계 학습 튜토리얼: 첫 번째 기계 학습 모델을 단계별로 구축

Feb 20, 2024 am 09:39 AM
python기계 학습머신러닝 알고리즘기계 학습 모델머신러닝 프로젝트

Python 机器学习初学者教程:一步一步构建你的第一个机器学习模型

머신러닝은 우리가 세상과 상호작용하는 방식을 놀라운 속도로 변화시키고 있습니다. 자율주행차부터 의료 진단까지, 기계 학습은 이제 다양한 분야에서 널리 사용됩니다. 자신만의 기계 학습 여정을 시작하고 싶다면 이 pythonMachine LearningTutorial이 적합합니다. 기본 개념부터 시작하여 단계별로 첫 번째 기계 학습 애플리케이션을 구축할 수 있도록 도와드리겠습니다.

1. 머신러닝의 기본 개념을 이해합니다

머신러닝은 본질적으로 컴퓨터 시스템이 데이터로부터 자동으로 학습하고 그로부터 지식을 추출하는 방법을 학습할 수 있도록 하는 학문입니다. 이를 통해 시스템은 프로그래밍되지 않고도 성능을 향상시킬 수 있습니다. 일반적인 기계 학습 알고리즘에는 지도 학습, 비지도 학습 및 강화 학습 알고리즘이 포함됩니다.

2. 적합한 기계 학습 라이브러리를 선택하세요

Python에는 선택할 수 있는 다양한 기계 학습 라이브러리가 있습니다. 가장 인기 있는 것에는 Scikit-Learn, Keras 및 Tensorflow가 있습니다. 이러한 라이브러리에는 각각 장단점이 있으므로 라이브러리를 선택할 때 특정 요구 사항을 고려해야 합니다.

3. 데이터를 준비하세요

머신러닝 알고리즘을 학습하려면 데이터가 필요합니다. 공개 데이터 세트,

및 자체 데이터베이스를 포함한 다양한 소스에서 데이터를 얻을 수 있습니다. 학습에 데이터를 사용하기 전에 알고리즘이 더 쉽게 처리할 수 있도록 사전 처리해야 합니다.

4. 적합한 기계 학습 알고리즘을 선택하세요

데이터와 작업을 기반으로 적절한 기계 학습 알고리즘을 선택해야 합니다. 선형 회귀, 로지스틱 회귀, 의사결정 트리, 지원 벡터 머신 등 선택할 수 있는 다양한 알고리즘이 있습니다.

5. 기계 학습 모델을 훈련하세요

알고리즘을 선택하면 훈련 데이터를 사용하여 훈련해야 합니다. 훈련 프로세스에는 알고리즘에 데이터를 공급하고 알고리즘이 데이터로부터 학습하도록 허용하는 작업이 포함됩니다. 훈련이 완료되면 새로운 데이터를 분류하거나 회귀할 수 있는 훈련된 모델을 갖게 됩니다.

6. 머신러닝 모델을 평가하세요

머신러닝 모델을 실제 데이터에 적용하기 전에 먼저 평가해야 합니다. 모델을 평가하는 일반적인 방법에는 정밀도, 재현율, F1 점수가 있습니다.

7. 기계 학습 모델 배포

기계 학습 모델에 만족하면 이를 프로덕션에 배포할 수 있습니다. 모델을 배포하는 일반적인 방법에는 클라우드 플랫폼과 에지 장치가 포함됩니다.

8. 머신러닝 모델 최적화

시간이 지남에 따라 기계 학습 모델이 구식이 될 수 있습니다. 모델의 정확성을 유지하려면 정기적으로

최적화해야 합니다. 모델을 최적화하는 일반적인 방법에는 모델 재교육, 하이퍼파라미터 조정, 다양한 알고리즘 사용 등이 있습니다.

위 내용은 초보자를 위한 Python 기계 학습 튜토리얼: 첫 번째 기계 학습 모델을 단계별로 구축의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 编程网에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
Python의 병합 목록 : 올바른 메소드 선택Python의 병합 목록 : 올바른 메소드 선택May 14, 2025 am 12:11 AM

Tomergelistsinpython, youcanusethe operator, extendmethod, listcomprehension, oritertools.chain, 각각은 각각의 지위를 불러 일으킨다

Python 3에서 두 목록을 연결하는 방법은 무엇입니까?Python 3에서 두 목록을 연결하는 방법은 무엇입니까?May 14, 2025 am 12:09 AM

Python 3에서는 다양한 방법을 통해 두 개의 목록을 연결할 수 있습니다. 1) 작은 목록에 적합하지만 큰 목록에는 비효율적입니다. 2) 메모리 효율이 높지만 원래 목록을 수정하는 큰 목록에 적합한 확장 방법을 사용합니다. 3) 원래 목록을 수정하지 않고 여러 목록을 병합하는 데 적합한 * 운영자 사용; 4) 메모리 효율이 높은 대형 데이터 세트에 적합한 itertools.chain을 사용하십시오.

Python은 문자열을 연결합니다Python은 문자열을 연결합니다May 14, 2025 am 12:08 AM

join () 메소드를 사용하는 것은 Python의 목록에서 문자열을 연결하는 가장 효율적인 방법입니다. 1) join () 메소드를 사용하여 효율적이고 읽기 쉽습니다. 2)주기는 큰 목록에 비효율적으로 운영자를 사용합니다. 3) List Comprehension과 Join ()의 조합은 변환이 필요한 시나리오에 적합합니다. 4) READE () 방법은 다른 유형의 감소에 적합하지만 문자열 연결에 비효율적입니다. 완전한 문장은 끝납니다.

파이썬 실행, 그게 뭐야?파이썬 실행, 그게 뭐야?May 14, 2025 am 12:06 AM

pythonexecutionissprocessoftransformingpythoncodeintoExecutableInstructions.1) the -interreadsTheCode, ConvertingItintoByTecode, thethepythonVirtualMachine (pvm)을 실행합니다

파이썬 : 주요 기능은 무엇입니까?파이썬 : 주요 기능은 무엇입니까?May 14, 2025 am 12:02 AM

Python의 주요 특징은 다음과 같습니다. 1. 구문은 간결하고 이해하기 쉽고 초보자에게 적합합니다. 2. 개발 속도 향상, 동적 유형 시스템; 3. 여러 작업을 지원하는 풍부한 표준 라이브러리; 4. 광범위한 지원을 제공하는 강력한 지역 사회와 생태계; 5. 스크립팅 및 빠른 프로토 타이핑에 적합한 해석; 6. 다양한 프로그래밍 스타일에 적합한 다중-파라 디그 지원.

파이썬 : 컴파일러 또는 통역사?파이썬 : 컴파일러 또는 통역사?May 13, 2025 am 12:10 AM

Python은 해석 된 언어이지만 편집 프로세스도 포함됩니다. 1) 파이썬 코드는 먼저 바이트 코드로 컴파일됩니다. 2) 바이트 코드는 Python Virtual Machine에 의해 해석되고 실행됩니다. 3)이 하이브리드 메커니즘은 파이썬이 유연하고 효율적이지만 완전히 편집 된 언어만큼 빠르지는 않습니다.

루프 대 루프를위한 파이썬 : 루프시기는 언제 사용해야합니까?루프 대 루프를위한 파이썬 : 루프시기는 언제 사용해야합니까?May 13, 2025 am 12:07 AM

USEAFORLOOPHENTERATINGOVERASERASERASPECIFICNUMBEROFTIMES; USEAWHILLOOPWHENTINUTIMONDITINISMET.FORLOOPSAREIDEALFORKNOWNSEDINGENCENCENS, WHILEWHILELOOPSSUITSITUATIONS WITHERMINGEDERITERATIONS.

파이썬 루프 : 가장 일반적인 오류파이썬 루프 : 가장 일반적인 오류May 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrors likeinfiniteloops, modifyinglistsdizeration, off-by-by-byerrors, zero-indexingissues, andnestedloopineficiencies.toavoidthese : 1) aing'i

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기

맨티스BT

맨티스BT

Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경