Linux의 데몬: 간단한 데몬을 작성하고 사용하는 방법
데몬 프로세스는 Linux 시스템의 특수 프로세스로, 제어 터미널 없이 백그라운드에서 실행되며 일부 시스템 또는 애플리케이션 관련 작업 및 기능을 수행합니다. 데몬의 역할은 예상치 못한 사고나 이상 상황에 대처하기 위해 시스템의 안정성과 효율성을 높이는 것입니다. 임베디드 Linux 장치에서는 데몬 프로세스를 사용하여 시스템의 기본 프로세스를 보호하고 비정상적으로 종료되어 시스템이 완전히 중단되고 사용자 경험이 파괴되는 것을 방지할 수 있습니다. 그런데 Linux의 데몬 프로세스를 정말로 이해하고 있나요? Linux에서 간단한 데몬을 작성하고 사용하는 방법을 알고 있습니까? 이 기사에서는 Linux에서 데몬 프로세스에 대한 관련 지식을 자세히 소개하여 Linux에서 이 강력한 프로세스 유형을 더 잘 사용하고 이해할 수 있도록 합니다.
Linux 장치에 데몬 프로세스를 생성하여 시스템의 메인 프로세스를 보호하고 예상치 못한 사고로 인해 메인 프로세스가 비정상적으로 종료되어 시스템이 응답 없이 완전히 종료되어 사용자 경험을 파괴하는 것을 방지합니다. 그러나 많은 정보를 검토한 결과 대부분의 사람들은 x86 플랫폼에서 데몬 프로세스를 생성하고 구현하는 방법에 대해서만 이야기하고 임베디드 플랫폼에서 데몬 프로세스를 생성하고 구현하는 방법을 소개한 사람은 아무도 없다는 사실을 발견했습니다. 그래서 원리부터 코드까지 모든 것을 탐색하고 전반적으로 이해한 후 몇 가지 아이디어를 직접 생각해 냈습니다. 아래는 간략한 요약과 구성입니다.
1. 기술 원칙
다음은 x86 리눅스 시스템의 데몬 프로세스 소개와 설명에 대해 인터넷에서 발췌한 내용입니다.
데몬은 백그라운드에서 실행되는 특수 프로세스로 제어 터미널과 독립적이며 주기적으로 특정 작업을 수행하거나 특정 이벤트의 처리를 기다립니다.
데몬 프로세스는 특별한 고아 프로세스입니다. 이런 종류의 프로세스가 터미널을 떠나야 하는 이유는 무엇입니까? 단말기와 분리된 이유는 어떤 단말기에서 생성된 정보로 인해 프로세스가 중단되는 것을 방지하기 위함이며, 실행 중 해당 정보는 어떤 단말기에도 표시되지 않습니다. Linux에서는 각 시스템이 사용자와 통신하는 인터페이스를 터미널이라고 부르므로 이 터미널에서 실행을 시작하는 모든 프로세스는 이 터미널을 제어 터미널이라고 합니다. , 해당 프로세스가 자동으로 닫힙니다. 그러나 데몬 프로세스는 이러한 한계를 극복할 수 있습니다. 터미널과 분리되어 백그라운드에서 실행되는 이유는 실행 중인 프로세스 중 정보가 어떤 터미널에도 표시되지 않도록 하기 위함입니다. 생성된 터미널 메시지로 인해 중단되지 않습니다. 실행될 때 실행되기 시작하며 전체 시스템이 종료될 때까지 종료되지 않습니다(물론 해당 데몬 프로세스를 종료하는 것으로 간주할 수 있습니다). 프로세스가 사용자, 중단 또는 기타 변경 사항에 영향을 받지 않도록 하려면 이 프로세스를 데몬 프로세스로 전환해야 합니다.
2. 디자인 단계
x86 플랫폼의 Linux 시스템의 경우 이론적으로 위의 효과를 달성하기 위해 데몬 프로세스에는 엄격한 구현 단계가 있습니다. 즉, 데몬 프로세스는 다른 작업에 방해나 영향을 받지 않고 백그라운드에서 안정적으로 실행될 수 있도록 시작 초기에 시스템 관련 일부 제한 사항을 제거해야 합니다.
다음은 x86 플랫폼에서 데몬을 작성하는 기본 프로세스입니다.
- 터미널 작동을 제어하는 일부 신호를 차단합니다. 이는 데몬이 실행되기 전에 제어 터미널이 방해를 받아 종료되거나 정지되는 것을 방지하기 위한 것입니다. 보다 자세한 신호 사용법은 "신호 인터럽트 처리"를 참조하십시오.
- 백그라운드에서 실행됩니다. 이는 제어 터미널이 정지되는 것을 방지하기 위해 데몬 프로세스를 백그라운드에 두는 것입니다. 방법은 프로세스에서 fork()를 호출하여 상위 프로세스를 종료하고 하위 프로세스의 백그라운드에서 데몬이 실행되도록 하는 것입니다.
- 터미널, 로그인 세션 및 프로세스 그룹의 제어를 분리합니다. 먼저 Linux에서 프로세스와 제어 터미널, 로그인 세션 및 프로세스 그룹 간의 관계를 소개할 필요가 있습니다. 프로세스는 프로세스 그룹에 속하고 프로세스 그룹 번호(GID)는 프로세스 그룹 리더의 프로세스 번호(PID)입니다. . 로그인 세션에는 여러 프로세스 그룹이 포함될 수 있습니다. 이러한 프로세스 그룹은 제어 터미널을 공유합니다. 이 제어 터미널은 일반적으로 프로세스가 생성된 쉘 로그인 터미널입니다. 터미널, 로그인 세션 및 프로세스 그룹 제어는 일반적으로 상위 프로세스에서 상속됩니다. 우리의 목표는 그것들을 제거하고 영향을 받지 않는 것입니다. 따라서 자식 프로세스를 새 세션 리더로 만들려면 setid()를 호출해야 합니다. setid() 호출이 성공한 후 프로세스는 새 세션 그룹 리더와 새 프로세스 그룹 리더가 되며 원래 로그인 세션 및 프로세스 그룹에서 분리됩니다. 제어 단말에 대한 세션 프로세스의 독점성으로 인해 해당 프로세스는 동시에 제어 단말에서 분리됩니다.
- 프로세스가 제어 터미널을 다시 열지 못하게 합니다. 이제 프로세스는 터미널 없는 세션 리더가 되었지만 제어 터미널을 열기 위해 다시 적용할 수 있습니다. 하위 프로세스를 다시 생성하여 더 이상 세션 리더가 아닌 프로세스로 제어 터미널을 다시 여는 것을 방지할 수 있습니다.
- 열려 있는 파일 설명자를 닫습니다. 프로세스는 자신을 생성한 상위 프로세스로부터 열린 파일 설명자를 상속합니다. 닫히지 않으면 시스템 리소스가 낭비되고 프로세스가 위치한 파일 시스템을 마운트 해제할 수 없으며 예측할 수 없는 오류가 발생합니다.
- 현재 작업 디렉터리를 변경합니다. 프로세스가 활성화되어 있는 동안에는 해당 작업 디렉터리를 포함하는 파일 시스템을 마운트 해제할 수 없습니다. 일반적으로 작업 디렉터리를 루트 디렉터리로 변경해야 합니다. 수행해야 하는 코어 덤프의 경우 실행 로그를 작성하는 프로세스는 작업 디렉터리를 /tmp와 같은 특정 디렉터리로 변경합니다.
- 파일 생성 마스크를 재설정합니다. 프로세스는 파일 생성 마스크를 생성한 상위 프로세스로부터 상속받습니다. 데몬이 생성한 파일의 액세스 권한을 수정할 수 있습니다. 이를 방지하려면 파일 생성 마스크를 지워야 합니다.
- SIGCHLD 신호를 처리합니다. 일부 프로세스, 특히 서버 프로세스의 경우 요청이 도착할 때 요청을 처리하기 위해 하위 프로세스가 생성되는 경우가 많습니다. 부모 프로세스가 자식 프로세스가 끝날 때까지 기다리지 않으면 자식 프로세스는 좀비 프로세스(좀비)가 되어 시스템 자원을 점유하게 됩니다. 좀비 프로세스에 대한 자세한 내용은 "좀비 프로세스"를 참조하세요. 부모 프로세스가 자식 프로세스가 끝날 때까지 기다리면 부모 프로세스의 부담이 커지고 서버 프로세스의 동시성 성능에 영향을 미치게 됩니다. Linux에서는 SIGCHLD 신호의 작동을 SIG_IGN으로 간단히 설정할 수 있습니다. 이러한 방식으로 커널은 하위 프로세스가 끝날 때까지 좀비 프로세스를 생성하지 않습니다.
–
다음은 선배님 블로그에서 가져온 전체 소스코드입니다.
3.실제 상황
위의 프로세스 로직과 실제 코드에서 볼 수 있듯이 x86 플랫폼의 데몬 프로세스는 실제로 상당히 복잡하고 지루한 초기화 프로세스가 많이 필요합니다. 하지만 임베디드 플랫폼의 경우에는 이런 복잡한 처리 없이 프로세스가 더 단순해 보입니다. 왜냐하면 이 임베디드 시스템에서는 데몬 프로세스가 활성화되어 있기 때문입니다. 목적은 단순히 이 데몬 프로세스를 사용하여 데몬화된 다른 프로세스를 시작한 다음 프로세스가 여전히 정상적으로 실행되고 있는지 정기적으로 모니터링하는 것입니다. 비정상적으로 실행되고 있는 것으로 확인되면 즉시 프로세스를 다시 시작하면 됩니다.
그래서 위의 과정을 단순화하여 다음과 같은 과정을 얻었습니다.
- 데몬 프로세스에서 모니터링이 필요한 프로세스를 시작합니다.
- 데몬 프로세스의 실행 상태를 정기적으로 모니터링하려면 데몬 프로세스에 스레드를 생성하세요
- 데몬 프로세스는 데몬화된 프로세스가 여전히 정상적으로 실행되고 있는지 확인하고, 비정상적으로 실행되고 있음을 발견하면 즉시 프로세스를 다시 시작합니다.
– 4. 실제 소스 코드
다음은 이번 임베디드 시스템 프로젝트에서 디자인한 데몬 프로세스 모듈의 전체 코드입니다.
/****************************************************************************************** ******** ** 函数名称: lockfile ** 功能描述: 对文件加锁/解锁 ** 输入参数: lock: 1表示进行加锁处理, 0表示进行解锁处理 ** 输出参数: 无 ** 返回参 数: 无 ************************************************************************************* *************/ int tryto_lockfile(int fd, int lock) { struct flock fl; fl.l_type = (lock = = 1) ? F_WRLCK : F_UNLCK; fl.l_start = 0; fl.l_whence = SEEK_SET; fl.l_len = 0; return (f cntl(fd, F_SETLK, &fl)); } /*************************************************************** *********************************** ** 函数名称: get_proc_running_state ** 功能描述: 获取进程 运行状态 ** 输入参数: 无 ** 输出参数: 无 ** 返回参数: 返回-1表示路径错误 ** 返回参数: 返回0表示进程 从未运行过,返回1表示进程曾经运行过但是现在停止运行了,返回2表示进程正在运行 中 **************************************************************************************** **********/ static int get_proc_running_state(const char* filename) { int fd; if (filename == NULL) { /* 文件名为 空 */ return -1; } fd = open(filename, O_RDWR, (S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)); i f (fd 0) { /* 文件不存在,表示进程从未运行 过 */ return 0; } if (tryto_lockfile(fd, 1) == -1) { /* 文件加锁失败,表示进程在运行 中 */ close(fd); return 2; } else { /* 文件加锁成功,表示进程已经消 失 */ tryto_lockfile(fd, 0); /* 此处要注意记得解锁和关闭文 件 */ close(fd); return 1; } } /*********************************************************** *************************************** ** 函数名称: proc_watch ** 功能描述: 检测进程是否有在运 行,没有运行则重新启动之 ** 输入参数: procname: 进程名 ** 输出参数: 无 ** 返回参数: 返回-1表示进程从 未运行过;返回0表示进程当前运行正常; ** 返回参数: 返回其他非零值表示进程不存在且已被重新启动,返回的值 是新的pid值 *************************************************************************** ***********************/ int proc_watch(const char *procname) { int result, state; char fi lename[100]; result = 0; sprintf(filename, "/var/run/%s.pid", procname); state = get_proc_ running_state(filename); switch (state) { case 0: result = -1; break; case 1: result = sta rt_proc_by_name(procname); break; case 2: result = 0; break; default: break; } return resu lt; } /************************************************************************************ ************** ** 函数名称: start_proc ** 功能描述: 启动进程开始运行 ** 输入参数: 无 ** 输出参 数: 无 ** 返回参数: 进程的ID号,若启动失败则返回 0 ***************************************************************************************** *********/ int start_proc_by_name(const char* procname) { pid_t pid, child_pid; char filen ame[100]; sprintf(filename, "%s%s", PROC_FILE_PATH, procname); child_pid = 0; if (access(f ilename, X_OK | F_OK) != 0) { /* 如果文件存在,并且可执行 */ return 0; } pid = fork(); /* 首 先要fork一个进程出来 */ if (pid 0) { /* 创建进程失 败 */ return 0; } else if (pid == 0) { /* 创建进程成功,此处是子进程的代 码 */ if (execl(filename, procname, (char *)NULL) != -1) { return 1; } else { return 0; } } else { /* 创建进程成功,此处是父进程代 ******************************************************************* ** 函数名 称: thread_client_hdl ** 功能描述: client进程监视线程 ** 输入参数: 无 ** 输出参数: 无 ** 返回参 数: 无 ************************************************************************************* *************/ static void *thread_client_hdl(void *pdata) { int result; pdata = pdata; sl eep(10); /* 第一次要进行延 时 */ for (;;) { printf("time to check thread_client...\n"); result = proc_watch(PROC_NAME _CLIENT); if (result == -1) { printf("thread_client never exist...\n"); } else if (result == 0) { printf("thread_client running ok...\n"); } else { printf("thread_client has gone! but restarted...\n"); } sleep(10); } return NULL; } /************************************* ************************************************************* ** 函数名称: main ** 功能描 述: 入口主函数 ** 输入参数: 无 ** 输出参数: 无 ** 返回参 数: 无 ************************************************************************************* *************/ int main(int argc, char *argv[]) { int client_para; char *p, *process_name; pthread_t thread_client; process_name = argv[0]; /* 获取进程名 称 */ p = process_name + strlen(process_name); while (*p != '/' && p != process_name) { p- -; } if (*p == '/') { process_name = p + 1; } printf("\"%s\" starting...\n", process_name) ; client_para = 0x01; if (pthread_create(&thread_client, NULL, thread_client_hdl, &client_ para) != 0) { printf("create thread_client failed!\n"); return 1; } if (start_proc_by_name (PROC_NAME_CLIENT) == 0) { printf("start thread_client failed!\n"); return 1; } for (;;) { sleep(60); printf("i am still alive...\n"); } return 0; }
通过本文,你应该对 Linux 下的守护进程有了一个基本的了解,知道了它的定义、特点和用途。你也应该明白了如何在 Linux 下编写和使用简单的守护进程,以及使用守护进程时需要注意的一些问题和技巧。我们建议你在使用 Linux 系统时,使用守护进程来提高系统的稳定性和效率。同时,我们也提醒你在使用守护进程时要注意一些潜在的问题和挑战,如信号处理、日志记录、资源管理等。希望本文能够帮助你更好地使用 Linux 系统,让你在 Linux 下掌握守护进程的编写和使用。
위 내용은 Linux의 데몬: 간단한 데몬을 작성하고 사용하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Linux를 배우는 것은 어렵지 않습니다. 1.Linux는 UNIX를 기반으로 한 오픈 소스 운영 체제이며 서버, 임베디드 시스템 및 개인용 컴퓨터에서 널리 사용됩니다. 2. 파일 시스템 및 권한 관리 이해가 핵심입니다. 파일 시스템은 계층 적이며 권한에는 읽기, 쓰기 및 실행이 포함됩니다. 3. APT 및 DNF와 같은 패키지 관리 시스템은 소프트웨어 관리를 편리하게 만듭니다. 4. 프로세스 관리는 PS 및 최고 명령을 통해 구현됩니다. 5. MKDIR, CD, Touch 및 Nano와 같은 기본 명령에서 학습을 시작한 다음 쉘 스크립트 및 텍스트 처리와 같은 고급 사용법을 사용해보십시오. 6. 권한 문제와 같은 일반적인 오류는 Sudo 및 CHMod를 통해 해결할 수 있습니다. 7. 성능 최적화 제안에는 HTOP을 사용하여 리소스 모니터링, 불필요한 파일 청소 및 SY 사용이 포함됩니다.

Linux 관리자의 평균 연봉은 미국에서 $ 75,000 ~ $ 95,000, 유럽에서는 40,000 유로에서 60,000 유로입니다. 급여를 늘리려면 다음과 같이 할 수 있습니다. 1. 클라우드 컴퓨팅 및 컨테이너 기술과 같은 새로운 기술을 지속적으로 배울 수 있습니다. 2. 프로젝트 경험을 축적하고 포트폴리오를 설정합니다. 3. 전문 네트워크를 설정하고 네트워크를 확장하십시오.

Linux의 주요 용도에는 다음이 포함됩니다. 1. 서버 운영 체제, 2. 임베디드 시스템, 3. 데스크탑 운영 체제, 4. 개발 및 테스트 환경. Linux는이 분야에서 뛰어나 안정성, 보안 및 효율적인 개발 도구를 제공합니다.

인터넷은 단일 운영 체제에 의존하지 않지만 Linux는 이에 중요한 역할을합니다. Linux는 서버 및 네트워크 장치에서 널리 사용되며 안정성, 보안 및 확장 성으로 인기가 있습니다.

Linux 운영 체제의 핵심은 명령 줄 인터페이스이며 명령 줄을 통해 다양한 작업을 수행 할 수 있습니다. 1. 파일 및 디렉토리 작업 LS, CD, MKDIR, RM 및 기타 명령을 사용하여 파일 및 디렉토리를 관리합니다. 2. 사용자 및 권한 관리는 UserAdd, Passwd, CHMOD 및 기타 명령을 통해 시스템 보안 및 리소스 할당을 보장합니다. 3. 프로세스 관리는 PS, Kill 및 기타 명령을 사용하여 시스템 프로세스를 모니터링하고 제어합니다. 4. 네트워크 운영에는 Ping, Ifconfig, SSH 및 기타 명령이 포함되어 있으며 네트워크 연결을 구성하고 관리합니다. 5. 시스템 모니터링 및 유지 관리 Top, DF, Du와 같은 명령을 사용하여 시스템의 작동 상태 및 리소스 사용을 이해합니다.

소개 Linux는 유연성과 효율성으로 인해 개발자, 시스템 관리자 및 전원 사용자가 선호하는 강력한 운영 체제입니다. 그러나 길고 복잡한 명령을 자주 사용하는 것은 지루하고 응급실이 될 수 있습니다.

Linux는 서버, 개발 환경 및 임베디드 시스템에 적합합니다. 1. 서버 운영 체제로서 Linux는 안정적이고 효율적이며 종종 고 대전성 애플리케이션을 배포하는 데 사용됩니다. 2. 개발 환경으로서 Linux는 효율적인 명령 줄 도구 및 패키지 관리 시스템을 제공하여 개발 효율성을 향상시킵니다. 3. 임베디드 시스템에서 Linux는 가볍고 사용자 정의 가능하며 자원이 제한된 환경에 적합합니다.

소개 : Linux 기반의 윤리적 해킹으로 디지털 프론티어 보안 점점 더 상호 연결된 세상에서 사이버 보안이 가장 중요합니다. 윤리적 해킹 및 침투 테스트는 취약점을 적극적으로 식별하고 완화하는 데 필수적입니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

WebStorm Mac 버전
유용한 JavaScript 개발 도구

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기
