bitsCN.com
这里的分表逻辑是根据t_group表的user_name组的个数来分的。
因为这种情况单独user_name字段上的索引就属于烂索引。起不了啥名明显的效果。
1、试验PROCEDURE.
DELIMITER $$
DROP PROCEDURE `t_girl`.`sp_split_table`$$
CREATE PROCEDURE `t_girl`.`sp_split_table`()
BEGIN
declare done int default 0;
declare v_user_name varchar(20) default '';
declare v_table_name varchar(64) default '';
-- Get all users' name.
declare cur1 cursor for select user_name from t_group group by user_name;
-- Deal with error or warnings.
declare continue handler for 1329 set done = 1;
-- Open cursor.
open cur1;
while done 1
do
fetch cur1 into v_user_name;
if not done then
-- Get table name.
set v_table_name = concat('t_group_',v_user_name);
-- Create new extra table.
set @stmt = concat('create table ',v_table_name,' like t_group');
prepare s1 from @stmt;
execute s1;
drop prepare s1;
-- Load data into it.
set @stmt = concat('insert into ',v_table_name,' select * from t_group where user_name = ''',v_user_name,'''');
prepare s1 from @stmt;
execute s1;
drop prepare s1;
end if;
end while;
-- Close cursor.
close cur1;
-- Free variable from memory.
set @stmt = NULL;
END$$
DELIMITER ;
2、试验表。
我们用一个有一千万条记录的表来做测试。
mysql> select count(*) from t_group;
+----------+
| count(*) |
+----------+
| 10388608 |
+----------+
1 row in set (0.00 sec)
表结构。
mysql> desc t_group;
+-------------+------------------+------+-----+-------------------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+------------------+------+-----+-------------------+----------------+
| id | int(10) unsigned | NO | PRI | NULL | auto_increment |
| money | decimal(10,2) | NO | | | |
| user_name | varchar(20) | NO | MUL | | |
| create_time | timestamp | NO | | CURRENT_TIMESTAMP | |
+-------------+------------------+------+-----+-------------------+----------------+
4 rows in set (0.00 sec)
索引情况。
mysql> show index from t_group;
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
| t_group | 0 | PRIMARY | 1 | id | A | 10388608 | NULL | NULL | | BTREE | |
| t_group | 1 | idx_user_name | 1 | user_name | A | 8 | NULL | NULL | | BTREE | |
| t_group | 1 | idx_combination1 | 1 | user_name | A | 8 | NULL | NULL | | BTREE | |
| t_group | 1 | idx_combination1 | 2 | money | A | 3776 | NULL | NULL | | BTREE | |
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
4 rows in set (0.00 sec)
PS:
idx_combination1 这个索引是必须的,因为要对user_name来GROUP BY。此时属于松散索引扫描!当然完了后你可以干掉她。
idx_user_name 这个索引是为了加快单独执行constant这种类型的查询。
我们要根据用户名来分表。
mysql> select user_name from t_group where 1 group by user_name;
+-----------+
| user_name |
+-----------+
| david |
| leo |
| livia |
| lucy |
| sarah |
| simon |
| sony |
| sunny |
+-----------+
8 rows in set (0.00 sec)
所以结果表应该是这样的。
mysql> show tables like 't_group_%';
+------------------------------+
| Tables_in_t_girl (t_group_%) |
+------------------------------+
| t_group_david |
| t_group_leo |
| t_group_livia |
| t_group_lucy |
| t_group_sarah |
| t_group_simon |
| t_group_sony |
| t_group_sunny |
+------------------------------+
8 rows in set (0.00 sec)
3、对比结果。
mysql> select count(*) from t_group where user_name = 'david';
+----------+
| count(*) |
+----------+
| 1298576 |
+----------+
1 row in set (1.71 sec)
执行了将近2秒。
mysql> select count(*) from t_group_david;
+----------+
| count(*) |
+----------+
| 1298576 |
+----------+
1 row in set (0.00 sec)
几乎是瞬间的。
mysql> select count(*) from t_group where user_name 'david';
+----------+
| count(*) |
+----------+
| 9090032 |
+----------+
1 row in set (9.26 sec)
执行了将近10秒,可以想象,这个是实际的项目中是不能忍受的。
mysql> select (select count(*) from t_group) - (select count(*) from t_group_david) as total;
+---------+
| total |
+---------+
| 9090032 |
+---------+
1 row in set (0.00 sec)
几乎是瞬间的。
我们来看看聚集函数。
对于原表的操作。
mysql> select min(money),max(money) from t_group where user_name = 'david';
+------------+------------+
| min(money) | max(money) |
+------------+------------+
| -6.41 | 500.59 |
+------------+------------+
1 row in set (0.00 sec)
最小,最大值都是FULL INDEX SCAN。所以是瞬间的。
mysql> select sum(money),avg(money) from t_group where user_name = 'david';
+--------------+------------+
| sum(money) | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (2.15 sec)
其他聚集函数的结果就不是FULL INDEX SCAN了。耗时2.15秒。
对于小表的操作。
mysql> select min(money),max(money) from t_group_david;
+------------+------------+
| min(money) | max(money) |
+------------+------------+
| -6.41 | 500.59 |
+------------+------------+
1 row in set (1.50 sec)
最大最小值完全是FULL TABLE SCAN,耗时1.50秒,不划算。以此看来。
mysql> select sum(money),avg(money) from t_group_david;
+--------------+------------+
| sum(money) | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (1.68 sec)
取得这两个结果也是花了快2秒,快了一点。
我们来看看这个小表的结构。
mysql> desc t_group_david;
+-------------+------------------+------+-----+-------------------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+------------------+------+-----+-------------------+----------------+
| id | int(10) unsigned | NO | PRI | NULL | auto_increment |
| money | decimal(10,2) | NO | | | |
| user_name | varchar(20) | NO | MUL | | |
| create_time | timestamp | NO | | CURRENT_TIMESTAMP | |
+-------------+------------------+------+-----+-------------------+----------------+
4 rows in set (0.00 sec)
明显的user_name属性是多余的。那么就干掉它。
mysql> alter table t_group_david drop user_name;
Query OK, 1298576 rows affected (7.58 sec)
Records: 1298576 Duplicates: 0 Warnings: 0
现在来重新对小表运行查询
mysql> select min(money),max(money) from t_group_david;
+------------+------------+
| min(money) | max(money) |
+------------+------------+
| -6.41 | 500.59 |
+------------+------------+
1 row in set (0.00 sec)
此时是瞬间的。
mysql> select sum(money),avg(money) from t_group_david;
+--------------+------------+
| sum(money) | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (0.94 sec)
这次算是控制在一秒以内了。
mysql> Aborted
小总结一下:分出的小表的属性尽量越少越好。大胆的去干吧。bitsCN.com

MySQL 성능을 효과적으로 모니터링하는 방법은 무엇입니까? Mysqladmin, Showglobalstatus, Perconamonitoring and Management (PMM) 및 MySQL Enterprisemonitor와 같은 도구를 사용하십시오. 1. MySQLADMIN을 사용하여 연결 수를보십시오. 2. showglobalstatus를 사용하여 쿼리 번호를보십시오. 3.pmm은 자세한 성능 데이터 및 그래픽 인터페이스를 제공합니다. 4. MySQLENTERPRISOMITOR는 풍부한 모니터링 기능 및 경보 메커니즘을 제공합니다.

MySQL과 SqlServer의 차이점은 1) MySQL은 오픈 소스이며 웹 및 임베디드 시스템에 적합합니다. 2) SQLServer는 Microsoft의 상용 제품이며 엔터프라이즈 수준 애플리케이션에 적합합니다. 스토리지 엔진의 두 가지, 성능 최적화 및 응용 시나리오에는 상당한 차이가 있습니다. 선택할 때는 프로젝트 규모와 향후 확장 성을 고려해야합니다.

고 가용성, 고급 보안 및 우수한 통합이 필요한 엔터프라이즈 수준의 응용 프로그램 시나리오에서는 MySQL 대신 SQLServer를 선택해야합니다. 1) SQLServer는 고 가용성 및 고급 보안과 같은 엔터프라이즈 수준의 기능을 제공합니다. 2) VisualStudio 및 Powerbi와 같은 Microsoft Ecosystems와 밀접하게 통합되어 있습니다. 3) SQLSERVER는 성능 최적화에서 우수한 성능을 발휘하며 메모리 최적화 된 테이블 및 열 스토리지 인덱스를 지원합니다.

mysqlmanagesCharactersetsandcollationsUtf-8AsthedEfault, confonfigurationAtdatabase, 테이블 및 columnlevels, andcolumnlevels, andcolumnlevels, andcolumnlevels, 1) setDefaultCharactersetandcollationforadatabase.2) secigurecharactersetandcollation

MySQL 트리거는 특정 데이터 작업이 수행 될 때 일련의 작업을 수행하는 데 사용되는 테이블과 관련된 자동 실행 된 저장 프로 시저입니다. 1) 트리거 정의 및 기능 : 데이터 검증, 로깅 등에 사용됩니다. 2) 작업 원칙 : 전후에 나누어지고 행 수준 트리거링을 지원합니다. 3) 사용의 예 : 급여 변경을 기록하거나 재고를 업데이트하는 데 사용할 수 있습니다. 4) 디버깅 기술 : ShowTriggers 및 ShowCreateTrigger 명령을 사용하십시오. 5) 성능 최적화 : 복잡한 작업을 피하고 인덱스 사용 및 거래 관리.

MySQL에서 사용자 계정을 작성하고 관리하는 단계는 다음과 같습니다. 1. 사용자 만들기 : CreateUser'Newuser '@'localhost'Identifiedby'Password '; 2. 권한 할당 : GrantSelect 사용, 삽입, UpdateOnmyDatabase.to'newuser'@'localhost '; 3. 권한 오류 수정 : Revokeallprivilegesonmydatabase.from'Newuser'@'localhost '; 그런 다음 권한을 재 할당합니다. 4. 최적화 권한 : showgra를 사용하십시오

MySQL은 빠른 개발 및 중소형 응용 프로그램에 적합한 반면 Oracle은 대기업 및 고 가용성 요구에 적합합니다. 1) MySQL은 오픈 소스이며 사용하기 쉬우 며 웹 응용 프로그램 및 중소 기업에 적합합니다. 2) Oracle은 강력하고 대기업 및 정부 기관에 적합합니다. 3) MySQL은 다양한 스토리지 엔진을 지원하며 Oracle은 풍부한 엔터프라이즈 수준의 기능을 제공합니다.

다른 관계형 데이터베이스와 비교하여 MySQL의 단점에는 다음이 포함됩니다. 1. 성능 문제 : 대규모 데이터를 처리 할 때 병목 현상을 만날 수 있으며 PostgreSQL은 복잡한 쿼리 및 빅 데이터 처리에서 더 잘 수행됩니다. 2. 확장 성 : 수평 스케일링 능력은 Google 스패너 및 Amazon Aurora만큼 좋지 않습니다. 3. 기능 제한 : 고급 기능에서 PostgreSQL 및 Oracle만큼 좋지 않으면 일부 기능에는 더 많은 사용자 정의 코드 및 유지 관리가 필요합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전
