NumPy는 Python의 중요한 과학 컴퓨팅 라이브러리로, 강력한 다차원 배열 객체와 브로드캐스트 기능은 물론 배열 연산과 계산을 위한 다양한 기능을 제공합니다. 데이터 과학 및 기계 학습 분야에서 NumPy는 배열 작업 및 수치 계산에 널리 사용됩니다. 이 기사에서는 NumPy의 일반적인 기능을 종합적으로 분석하고 애플리케이션과 예제를 제공하며 특정 코드 예제를 제공합니다.
1. NumPy 함수 개요
NumPy 함수는 크게 배열 연산 함수, 수학 함수, 통계 함수, 논리 함수로 구분됩니다. 이들 함수는 아래에서 자세히 소개됩니다.
- 배열 연산 함수
(1) 배열 만들기: NumPy의 np.array() 함수를 사용하여 배열을 만들고, 리스트나 튜플을 전달하면 됩니다.
샘플 코드:
import numpy as np a = np.array([1, 2, 3]) b = np.array((4, 5, 6)) print(a) print(b)
출력 결과:
[1 2 3] [4 5 6]
(2) 배열의 모양: 배열 함수의 모양을 이용하여 배열의 모양 정보를 얻을 수 있습니다.
샘플 코드:
import numpy as np a = np.array([[1, 2, 3], [4, 5, 6]]) print(a.shape)
출력 결과:
(2, 3)
(3) 배열 인덱싱 및 슬라이싱: 배열 인덱싱 및 슬라이싱 작업을 사용하면 배열의 요소와 하위 배열을 쉽게 얻을 수 있습니다.
샘플 코드:
import numpy as np a = np.array([[1, 2, 3], [4, 5, 6]]) print(a[0, 1]) print(a[:, 1:3])
출력 결과:
2 [[2 3] [5 6]]
- 수학 함수
NumPy는 지수 함수, 로그 함수, 삼각 함수 등과 같이 일반적으로 사용되는 많은 수학 함수를 제공합니다.
(1) 지수 함수: np.exp() 함수를 사용하여 배열에 있는 각 요소의 지수를 계산합니다.
샘플 코드:
import numpy as np a = np.array([1, 2, 3]) print(np.exp(a))
출력 결과:
[ 2.71828183 7.3890561 20.08553692]
(2) 로그 함수: np.log() 함수를 사용하여 배열의 각 요소에 대한 자연 로그를 계산합니다.
샘플 코드:
import numpy as np a = np.array([1, 2, 3]) print(np.log(a))
출력 결과:
[0. 0.69314718 1.09861229]
(3) 삼각 함수: np.sin(), np.cos() 및 np.tan()과 같은 함수를 사용하여 각 요소의 사인을 계산할 수 있습니다. 배열, 코사인 및 탄젠트 값.
샘플 코드:
import numpy as np a = np.array([0, np.pi/2, np.pi]) print(np.sin(a))
출력 결과:
[0.00000000e+00 1.00000000e+00 1.22464680e-16]
- 통계 함수
NumPy는 최대값, 평균, 분산 등 통계 분석을 위한 다양한 함수를 제공합니다.
(1) Mean: np.mean() 함수를 사용하여 배열의 평균을 계산합니다.
샘플 코드:
import numpy as np a = np.array([1, 2, 3, 4, 5]) print(np.mean(a))
출력 결과:
3.0
(2) 최대값과 최소값: np.max() 및 np.min() 함수를 사용하여 각각 배열의 최대값과 최소값을 계산합니다.
샘플 코드:
import numpy as np a = np.array([1, 2, 3, 4, 5]) print(np.max(a)) print(np.min(a))
출력 결과:
5 1
(3) 분산 및 표준 편차: np.var() 및 np.std() 함수를 사용하여 각각 배열의 분산 및 표준 편차를 계산할 수 있습니다.
샘플 코드:
import numpy as np a = np.array([1, 2, 3, 4, 5]) print(np.var(a)) print(np.std(a))
출력 결과:
2.0 1.4142135623730951
- 논리 함수
논리 함수는 주로 배열에 대한 부울 연산과 논리적 판단을 수행하는 데 사용됩니다.
(1) 논리 연산: np.logical_and(), np.logical_or() 및 np.logical_not()과 같은 함수를 사용하여 논리 AND, 논리 OR 및 논리 NOT 연산을 수행할 수 있습니다.
샘플 코드:
import numpy as np a = np.array([True, False, True]) b = np.array([False, True, True]) print(np.logical_and(a, b)) print(np.logical_or(a, b)) print(np.logical_not(a))
출력 결과:
[False False True] [ True True True] [False True False]
(2) 논리적 판단: np.all() 및 np.any() 함수를 사용하여 배열의 요소가 특정 조건을 충족하는지 판단할 수 있습니다.
샘플 코드:
import numpy as np a = np.array([1, 2, 3, 4, 5]) print(np.all(a > 0)) print(np.any(a > 3))
출력 결과:
True True
2. 애플리케이션 및 예제
NumPy 기능의 사용법을 보여주기 위해 두 가지 특정 애플리케이션과 예제가 아래에 제공됩니다.
- 유클리드 거리 계산
유클리드 거리는 두 벡터 사이의 거리를 계산하는 데 사용되는 일반적인 방법입니다.
샘플 코드:
import numpy as np def euclidean_distance(a, b): return np.sqrt(np.sum(np.square(a - b))) a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) dist = euclidean_distance(a, b) print(dist)
출력 결과:
5.196152422706632
- 원-핫 인코딩
원-핫 인코딩은 이산 특성을 수치 특성으로 변환하는 방법으로 분류 문제에 자주 사용됩니다.
샘플 코드:
import numpy as np def one_hot_encode(labels, num_classes): encoded = np.zeros((len(labels), num_classes)) for i, label in enumerate(labels): encoded[i, label] = 1 return encoded labels = np.array([0, 1, 2, 1, 0]) num_classes = 3 encoded_labels = one_hot_encode(labels, num_classes) print(encoded_labels)
출력 결과:
[[1. 0. 0.] [0. 1. 0.] [0. 0. 1.] [0. 1. 0.] [1. 0. 0.]]
위는 NumPy 함수와 두 가지 특정 애플리케이션 및 예제에 대한 포괄적인 분석입니다. NumPy 함수의 사용법을 학습함으로써 배열 데이터를 보다 유연하게 처리하고 계산할 수 있으며, 이는 데이터 과학 및 기계 학습 실습에서 중요한 역할을 합니다. 이 글이 독자들이 NumPy 기능을 배우고 적용하는 데 도움이 되기를 바랍니다.
위 내용은 NumPy 기능에 대한 심층 분석: 실제 응용 프로그램 및 예제의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python 3.6에 피클 파일로드 3.6 환경 보고서 오류 : modulenotfounderror : nomodulename ...

경치 좋은 스팟 댓글 분석에서 Jieba Word 세분화 문제를 해결하는 방법은 무엇입니까? 경치가 좋은 스팟 댓글 및 분석을 수행 할 때 종종 Jieba Word 세분화 도구를 사용하여 텍스트를 처리합니다 ...


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.
