찾다
백엔드 개발파이썬 튜토리얼업무 효율성을 높이기 위해 numpy 함수 팁과 예시를 공유하세요.

업무 효율성을 높이기 위해 numpy 함수 팁과 예시를 공유하세요.

Jan 26, 2024 am 09:38 AM
업무 효율성예시 공유numpy 함수

업무 효율성을 높이기 위해 numpy 함수 팁과 예시를 공유하세요.

작업 효율성 향상을 위한 numpy 함수 팁 및 예제 공유

소개:
데이터 처리 및 과학 컴퓨팅 분야에서는 Python의 numpy 라이브러리를 사용하는 것이 매우 일반적입니다. Numpy는 대규모 데이터 작업 및 계산을 쉽게 수행할 수 있는 일련의 강력한 기능과 도구를 제공합니다. 이 기사에서는 작업 효율성을 향상시키고 구체적인 코드 예제를 제공하기 위한 몇 가지 numpy 함수 기술을 소개합니다.

1. 벡터화 작업
Numpy의 벡터화 작업은 가장 강력한 기능 중 하나입니다. 벡터화 작업을 통해 각 요소에 대한 작업에 for 루프를 사용하지 않아도 되므로 작업 속도가 크게 향상됩니다.

샘플 코드 1: 행렬의 행과 열의 합을 계산합니다

import numpy as np

m = np.random.rand(1000, 1000)

# 使用for循环
row_sum = np.zeros(1000)
col_sum = np.zeros(1000)
for i in range(1000):
    for j in range(1000):
        row_sum[i] += m[i][j]
        col_sum[j] += m[i][j]

# 使用矢量化操作
row_sum = np.sum(m, axis=1)
col_sum = np.sum(m, axis=0)

샘플 코드 2: 두 배열의 가중 평균을 계산합니다

import numpy as np

a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
weights = np.array([0.2, 0.3, 0.5])

# 使用for循环
result = 0
for i in range(3):
    result += a[i] * b[i] * weights[i]

# 使用矢量化操作
result = np.dot(np.multiply(a, b), weights)

2. Broadcast
Broadcasting은 서로 다른 차원의 배열을 허용하는 numpy의 함수입니다. be 시간 계산이 매우 편리해집니다. 브로드캐스트를 사용하면 명시적인 차원 일치 없이 배열에서만 작업할 수 있습니다.

샘플 코드 3: 배열의 평균 제곱 오차 계산

import numpy as np

a = np.array([1, 2, 3])
mean = np.mean(a)
var = np.sqrt(np.mean((a - mean) ** 2))

샘플 코드 4: 행렬의 각 행에서 해당 행의 평균을 뺍니다

import numpy as np

m = np.random.rand(1000, 1000)
mean = np.mean(m, axis=1)
m -= mean[:, np.newaxis]

3 슬라이싱 및 인덱싱 기술
Numpy는 다양한 슬라이싱을 제공합니다. 배열을 편리하게 가로채고 필터링할 수 있는 인덱싱 기술.

샘플 코드 5: 배열에서 일부 요소를 무작위로 추출

import numpy as np

a = np.arange(100)
np.random.shuffle(a)
selected = a[:10]

샘플 코드 6: 조건을 충족하는 배열의 요소 필터링

import numpy as np

a = np.array([1, 2, 3, 4, 5, 6])
selected = a[a > 3]

4 일반 함수 및 집계 함수
Numpy는 수많은 일반 함수와 집계를 제공합니다. 배열에 대한 다양한 수학 및 통계 연산을 편리하게 수행할 수 있는 함수입니다.

샘플 코드 7: 배열 요소의 절대값 가져오기

import numpy as np

a = np.array([-1, -2, -3, 4, 5, 6])
abs_a = np.abs(a)

샘플 코드 8: 배열의 합계, 평균 및 최대값 계산

import numpy as np

a = np.array([1, 2, 3, 4, 5, 6])
sum_a = np.sum(a)
mean_a = np.mean(a)
max_a = np.max(a)

요약:
이 문서에서는 작업 개선을 위한 몇 가지 numpy 함수 기술을 소개합니다. 효율성을 높이고 구체적인 코드 예제를 제공합니다. 벡터화 작업, 브로드캐스팅, 슬라이싱 및 인덱싱 기술, 일반 및 집계 함수 사용을 통해 데이터 처리 및 과학 컴퓨팅에서 numpy를 보다 효율적으로 사용할 수 있습니다. 이 글이 모든 분들의 업무에 도움이 되었으면 좋겠습니다!

위 내용은 업무 효율성을 높이기 위해 numpy 함수 팁과 예시를 공유하세요.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
파이썬 목록을 어떻게 슬라이스합니까?파이썬 목록을 어떻게 슬라이스합니까?May 02, 2025 am 12:14 AM

slicepaythonlistisdoneusingthesyntaxlist [start : step : step] .here'showitworks : 1) startistheindexofthefirstelementtoinclude.2) stopistheindexofthefirstelemement.3) stepisincrementbetwetweentractionsoftortionsoflists

Numpy Array에서 수행 할 수있는 일반적인 작업은 무엇입니까?Numpy Array에서 수행 할 수있는 일반적인 작업은 무엇입니까?May 02, 2025 am 12:09 AM

NumpyAllowsForVariousOperationsOnArrays : 1) BasicArithmeticLikeadDition, Subtraction, A 및 Division; 2) AdvancedOperationsSuchasmatrixmultiplication; 3) extrayintondsfordatamanipulation; 5) Ag

파이썬으로 데이터 분석에 어레이가 어떻게 사용됩니까?파이썬으로 데이터 분석에 어레이가 어떻게 사용됩니까?May 02, 2025 am 12:09 AM

Arraysinpython, 특히 Stroughnumpyandpandas, areestentialfordataanalysis, setingspeedandefficiency

목록의 메모리 풋 프린트는 파이썬 배열의 메모리 풋 프린트와 어떻게 비교됩니까?목록의 메모리 풋 프린트는 파이썬 배열의 메모리 풋 프린트와 어떻게 비교됩니까?May 02, 2025 am 12:08 AM

ListSandnumpyArraysInpythonHavedifferentmoryfootPrints : ListSaremoreFlexibleButlessMemory-Efficer, whilumpyArraySareOptimizedFornumericalData.1) ListSTorERENFERENCESTOOBJECTS, OverHeadAround64ByTeson64-BitSyStems.2) NumpyArraysTATACONTACOTIGUOU

실행 파이썬 스크립트를 배포 할 때 환경 별 구성을 어떻게 처리합니까?실행 파이썬 스크립트를 배포 할 때 환경 별 구성을 어떻게 처리합니까?May 02, 2025 am 12:07 AM

ToensurePythonScriptTscriptsBecorrectelyRossDevelopment, Staging and Production, UsethesEStrategies : 1) EnvironmberVariblesForsimplesettings, 2) ConfigurationFilesforcomplexSetups 및 3) DynamicLoadingForAdAptability

파이썬 어레이를 어떻게 슬라이스합니까?파이썬 어레이를 어떻게 슬라이스합니까?May 01, 2025 am 12:18 AM

Python List 슬라이싱의 기본 구문은 목록 [start : stop : step]입니다. 1. Start는 첫 번째 요소 인덱스, 2.Stop은 첫 번째 요소 인덱스가 제외되고 3. Step은 요소 사이의 단계 크기를 결정합니다. 슬라이스는 데이터를 추출하는 데 사용될뿐만 아니라 목록을 수정하고 반전시키는 데 사용됩니다.

어떤 상황에서 목록이 배열보다 더 잘 수행 될 수 있습니까?어떤 상황에서 목록이 배열보다 더 잘 수행 될 수 있습니까?May 01, 2025 am 12:06 AM

ListSoutPerformArraysin : 1) DynamicsizingandFrequentInsertions/Deletions, 2) StoringHeterogeneousData 및 3) MemoryEfficiencyForsParsEdata, butMayHavesLightPerformanceCosceperationOperations.

파이썬 어레이를 파이썬 목록으로 어떻게 변환 할 수 있습니까?파이썬 어레이를 파이썬 목록으로 어떻게 변환 할 수 있습니까?May 01, 2025 am 12:05 AM

TOCONVERTAPYTHONARRAYTOALIST, USETHELIST () CONSTUCTORORAGENERATERATOREXPRESSION.1) importTheArrayModuleAndCreateAnarray.2) USELIST (ARR) 또는 [XFORXINARR] TOCONVERTITTOALIST.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!