numpy 함수 이해: Python에서 일반적으로 사용되는 numpy 함수를 살펴보세요. 구체적인 코드 예제가 필요합니다.
소개:
Python에서 NumPy(NumPy)(NumPy)는 Python에 효율적인 다차원 기능을 제공하는 강력한 과학 컴퓨팅 라이브러리입니다. 배열 객체와 대규모 수학 함수 라이브러리. NumPy는 Python을 사용한 과학 컴퓨팅의 핵심 라이브러리 중 하나로 데이터 분석, 기계 학습, 이미지 처리 및 기타 분야에서 널리 사용됩니다. 이 기사에서는 일반적으로 사용되는 NumPy 함수를 소개하고 특정 코드 예제를 제공합니다.
1. 배열 생성 함수
(1) 1차원 배열 생성
numpy의 arange, linspace, logspace 등의 함수를 사용하여 1차원 배열을 생성할 수 있습니다.
코드 예:
np로 numpy 가져오기
arange 함수를 사용하여 1차원 배열 만들기
arr1 = np.arange(10)
print("arange 함수로 만든 1차원 배열: ", arr1)
Use linspace 이 함수는 1차원 배열을 만듭니다
arr2 = np.linspace(0, 1, 10) # 0부터 1까지 동일한 간격의 숫자 10개를 생성합니다
print("linspace로 만든 1차원 배열 function: ", arr2)
logspace 함수를 사용하여 1차원 배열을 만듭니다
arr3 = np.logspace(0, 2, 10) # 10^0에서 10^2까지 로그 간격 숫자 10개를 생성합니다
print( "로그스페이스 함수 Array로 생성된 1차원 배열: ", arr3)
(2) 다차원 배열 생성
1차원 배열 외에도 numpy의 배열 함수를 사용하여 다차원 배열을 생성할 수도 있습니다.
코드 예:
np로 numpy 가져오기
배열 함수를 사용하여 2차원 배열 만들기
arr4 = np.array([[1, 2, 3],
[4, 5, 6]])
print("2차원 배열) 배열 함수로 생성됨 :
", arr4)
배열 함수를 사용하여 3차원 배열 만들기
arr5 = np.array([[[1, 2, 3],
[4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
print("3차원 배열) 배열 함수로 생성됨:
", arr5)
2. 배열 연산 함수
NumPy는 수학 함수, 통계 함수, 논리 함수 등 다양한 배열 연산 함수를 제공합니다.
(1) 수학 함수
수학 함수 NumPy에서는 로그 함수, 삼각 함수, 지수 함수 등과 같은 일부 계산을 수행할 수 있습니다.
코드 예:
np
arr6 = np.array([1, 2, 3)로 numpy 가져오기 , 4])
배열의 제곱을 계산합니다.
print("배열의 제곱:", np.square(arr6))
배열의 제곱근을 계산합니다.
print("배열의 제곱근 배열:", np.sqrt(arr6))
배열의 지수 함수를 계산합니다
print("배열의 지수 함수:", np.exp(arr6))
(2) 통계 함수
를 사용하여 NumPy의 통계 함수를 사용하면 합계, 평균, 최대값, 최소값 등과 같은 배열에 대한 통계 분석을 수행할 수 있습니다.
코드 예:
import numpy as np
arr7 = np.array([1, 2 , 3, 4, 5])
배열의 합을 구합니다
print("배열의 합 :", np.sum(arr7))
배열의 평균을 구합니다
print("The 배열의 평균:", np.mean(arr7))
배열의 최대값 찾기
print("배열의 평균 최대값: ", np.max(arr7))
최소값 찾기 value of the array
print("배열의 최소값: ", np.min(arr7))
(3) 논리 함수
배열의 논리 함수 요소가 만족하는지 판단하는 등 요소에 대한 논리 연산을 수행합니다.
코드 예:
import numpy as np
arr8 = np.array([1, 2, 3, 4, 5])
판단.
print("배열의 요소가 2보다 큰지 여부:", np.greater(arr8, 2))배열의 요소가 3보다 작거나 같은지 확인print("요소가 배열의 값은 3보다 작거나 같습니다: ", np.less_equal(arr8, 3))3. 배열 모양 함수NumPy는 배열 모양 변경, 배열 접합 등과 같은 배열 모양 작업을 위한 많은 함수를 제공합니다. . (1) 배열 모양 변경 1차원 배열을 2차원 배열로 변경하거나 다차원 배열을 1차원 배열로 변경하는 등 reshape 함수를 사용하여 배열의 모양을 변경할 수 있습니다. -차원 배열.
print("1차원 배열을 2차원 배열로 변환:
", arr10)
print("다차원 배열을 1차원 배열로 변환 1차원 배열의 경우: ", arr11)
NumPy는 접합을 위한 vstack, hstack 및 연결과 같은 기능을 제공합니다. 배열.
[4, 5, 6]])arr13 = np.array([[7, 8, 9],
[10, 11, 12]])vertical) 접합된 배열arr14 = np.vstack((arr12, arr13))
print("수직 접합 배열:
", arr14)
print ("수평 접합 배열:
", arr15)
이 글의 소개를 통해 우리는 배열을 생성하는 함수, 배열 연산 함수, 배열 연산과 수학적 계산을 보다 편리하게 수행하고 프로그래밍 효율성을 높이는 데 도움이 됩니다. 처리 및 과학적 계산
위 내용은 Python에서 일반적으로 사용되는 numpy 함수 살펴보기: numpy 함수 이해의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

드림위버 CS6
시각적 웹 개발 도구

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.
