numpy를 사용하여 난수를 생성하는 일반적인 방법 분석
난수는 데이터 분석 및 기계 학습에서 중요한 역할을 합니다. Numpy는 Python에서 일반적으로 사용되는 수치 계산 라이브러리로, 난수를 생성하는 다양한 방법을 제공합니다. 이 기사에서는 numpy에서 난수를 생성하는 일반적인 방법을 분석하고 구체적인 코드 예제를 제공합니다.
numpy는 임의의 정수를 생성하는 numpy.random.randint() 함수를 제공합니다. 이 함수는 지정된 범위 내에서 임의의 정수를 생성합니다.
import numpy as np # 生成范围在[low, high)之间的随机整数 rand_int = np.random.randint(low, high, size)
그 중 low는 임의의 정수 생성의 하한(포함)을 나타내고, high는 상한(제외)을 나타내며, size는 생성된 임의의 정수 수를 나타냅니다.
예:
import numpy as np rand_int = np.random.randint(1, 10, size=5) print(rand_int)
출력:
[4 9 5 3 1]
위 코드는 1에서 10 사이의 임의의 정수 5개를 생성합니다.
numpy는 무작위 부동 소수점 숫자를 생성하는 numpy.random.rand() 및 numpy.random.randn() 함수를 제공합니다.
import numpy as np # 生成[0, 1)之间的均匀分布的随机浮点数 rand_float = np.random.rand(size) # 生成符合标准正态分布的随机浮点数 rand_normal_float = np.random.randn(size)
그 중 rand_float는 [0, 1) 사이에 균일하게 분포된 임의의 부동 소수점 수를 생성하고, rand_normal_float는 표준 정규 분포를 따르는 임의의 부동 소수점 수를 생성합니다. 크기는 생성된 임의의 부동 소수점 숫자의 수를 나타냅니다.
예:
import numpy as np rand_float = np.random.rand(5) rand_normal_float = np.random.randn(5) print(rand_float) print(rand_normal_float)
출력:
[0.83600534 0.69029467 0.44770399 0.61348757 0.93889918]
[-0.9200914 0.45598762 -0.76400 891 -0 .18554811 1.67634905]
위 코드는 길이가 5인 균일하게 분포된 무작위 부동 소수점 배열과 길이 5 표준 정규 분포 난수 부동 소수점 숫자의 배열입니다.
numpy에서 생성되는 난수는 기본적으로 의사 난수입니다. 즉, 프로그램이 실행될 때마다 생성되는 난수는 다릅니다. 동일한 난수 시퀀스를 생성하려면 난수 시드를 사용할 수 있습니다.
import numpy as np # 设置随机种子 np.random.seed(seed)
그 중 시드는 랜덤 시드의 가치를 나타냅니다. 동일한 난수 시드에 의해 생성된 난수 시퀀스는 동일합니다.
예:
import numpy as np np.random.seed(0) rand_int = np.random.randint(1, 10, size=5) print(rand_int) np.random.seed(0) rand_int = np.random.randint(1, 10, size=5) print(rand_int)
출력:
[6 1 4 8 4]
[6 1 4 8 4]
위 코드는 동일한 무작위 시드를 사용하여 두 개의 동일한 무작위 정수 배열을 생성하여 무작위 시드를 0으로 설정합니다.
numpy에서 난수를 생성하는 일반적인 방법에 대한 이 기사의 분석 및 코드 예제를 통해 독자는 numpy 라이브러리에서 난수를 생성하는 작업에 더 익숙해질 것이라고 믿습니다. 데이터 분석 및 기계 학습과 같은 분야에서 난수 생성은 일반적인 작업입니다. 이러한 방법을 익히는 것은 관련 데이터 실험 및 모델 교육에 매우 유용합니다.
위 내용은 numpy에서 일반적으로 사용되는 난수 생성 방법 분석의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!