찾다
백엔드 개발파이썬 튜토리얼Numpy 기능: 종합적인 분석과 심층적인 적용

Numpy 기능: 종합적인 분석과 심층적인 적용

numpy 함수에 대한 자세한 설명: 초보자부터 마스터까지

소개:
데이터 과학 및 기계 학습 분야에서 numpy는 매우 중요한 Python 라이브러리입니다. 효율적이고 강력한 다차원 배열 조작 도구를 제공하여 대규모 데이터를 쉽고 빠르게 처리할 수 있습니다. 이 기사에서는 배열 생성, 인덱싱, 슬라이싱, 작업 및 변환을 포함하여 numpy 라이브러리에서 가장 일반적으로 사용되는 일부 기능을 자세히 소개하고 특정 코드 예제도 제공합니다.

1. 배열 생성

  1. 배열을 생성하려면 numpy.array() 함수를 사용하세요.

    import numpy as np
    
    # 创建一维数组
    arr1 = np.array([1, 2, 3, 4, 5])
    print(arr1)
    
    # 创建二维数组
    arr2 = np.array([[1, 2, 3], [4, 5, 6]])
    print(arr2)
    
    # 创建全0/1数组
    arr_zeros = np.zeros((2, 3))
    print(arr_zeros)
    
    arr_ones = np.ones((2, 3))
    print(arr_ones)
    
    # 创建指定范围内的数组
    arr_range = np.arange(0, 10, 2)
    print(arr_range)

2. 배열 인덱싱 및 슬라이싱

  1. 인덱스를 사용하여 배열 요소에 액세스하세요.

    import numpy as np
    
    arr = np.array([1, 2, 3, 4, 5])
    print(arr[0])
    print(arr[2:4])
  2. 부울 인덱싱을 사용하여 조건을 충족하는 요소를 선택하세요.

    import numpy as np
    
    arr = np.array([1, 2, 3, 4, 5])
    print(arr[arr > 3])

3. 배열 작업

  1. 배열에 대한 기본 작업입니다.

    import numpy as np
    
    arr1 = np.array([1, 2, 3])
    arr2 = np.array([4, 5, 6])
    
    # 加法
    print(arr1 + arr2)
    
    # 减法
    print(arr1 - arr2)
    
    # 乘法
    print(arr1 * arr2)
    
    # 除法
    print(arr1 / arr2)
    
    # 矩阵乘法
    print(np.dot(arr1, arr2))
  2. 어레이에 대한 집계 작업.

    import numpy as np
    
    arr = np.array([1, 2, 3, 4, 5])
    
    # 求和
    print(np.sum(arr))
    
    # 求最大值
    print(np.max(arr))
    
    # 求最小值
    print(np.min(arr))
    
    # 求平均值
    print(np.mean(arr))

4. 배열 변환

  1. 배열의 모양을 변경하려면 reshape() 함수를 사용하세요.

    import numpy as np
    
    arr = np.arange(10)
    print(arr)
    
    reshaped_arr = arr.reshape((2, 5))
    print(reshaped_arr)
  2. 다차원 배열을 1차원 배열로 변환하려면 flatten() 함수를 사용하세요.

    import numpy as np
    
    arr = np.array([[1, 2, 3], [4, 5, 6]])
    print(arr)
    
    flatten_arr = arr.flatten()
    print(flatten_arr)

결론:
이 문서에서는 배열 생성, 인덱싱, 슬라이싱, 작업 및 변환과 같은 작업을 포함하여 numpy 라이브러리의 몇 가지 일반적인 기능에 대해 자세히 소개합니다. Numpy 라이브러리의 강력한 기능은 대규모 데이터를 효율적으로 처리하고 데이터 과학 및 기계 학습의 효율성을 향상시키는 데 도움이 될 수 있습니다. 이 글을 통해 독자들이 numpy 라이브러리의 기능을 더 잘 이해하고 적용하며, 실무에서 유연하게 사용할 수 있기를 바랍니다.

참조:

  1. https://numpy.org/doc/stable/reference/

위 내용은 Numpy 기능: 종합적인 분석과 심층적인 적용의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
파이썬의 주요 목적 : 유연성과 사용 편의성파이썬의 주요 목적 : 유연성과 사용 편의성Apr 17, 2025 am 12:14 AM

Python의 유연성은 다중 파리가 지원 및 동적 유형 시스템에 반영되며, 사용 편의성은 간단한 구문 및 풍부한 표준 라이브러리에서 나옵니다. 유연성 : 객체 지향, 기능 및 절차 프로그래밍을 지원하며 동적 유형 시스템은 개발 효율성을 향상시킵니다. 2. 사용 편의성 : 문법은 자연 언어에 가깝고 표준 라이브러리는 광범위한 기능을 다루며 개발 프로세스를 단순화합니다.

파이썬 : 다목적 프로그래밍의 힘파이썬 : 다목적 프로그래밍의 힘Apr 17, 2025 am 12:09 AM

Python은 초보자부터 고급 개발자에 이르기까지 모든 요구에 적합한 단순성과 힘에 호의적입니다. 다목적 성은 다음과 같이 반영됩니다. 1) 배우고 사용하기 쉽고 간단한 구문; 2) Numpy, Pandas 등과 같은 풍부한 라이브러리 및 프레임 워크; 3) 다양한 운영 체제에서 실행할 수있는 크로스 플랫폼 지원; 4) 작업 효율성을 향상시키기위한 스크립팅 및 자동화 작업에 적합합니다.

하루 2 시간 안에 파이썬 학습 : 실용 가이드하루 2 시간 안에 파이썬 학습 : 실용 가이드Apr 17, 2025 am 12:05 AM

예, 하루에 2 시간 후에 파이썬을 배우십시오. 1. 합리적인 학습 계획 개발, 2. 올바른 학습 자원을 선택하십시오. 3. 실습을 통해 학습 된 지식을 통합하십시오. 이 단계는 짧은 시간 안에 Python을 마스터하는 데 도움이 될 수 있습니다.

Python vs. C : 개발자를위한 장단점Python vs. C : 개발자를위한 장단점Apr 17, 2025 am 12:04 AM

Python은 빠른 개발 및 데이터 처리에 적합한 반면 C는 고성능 및 기본 제어에 적합합니다. 1) Python은 간결한 구문과 함께 사용하기 쉽고 데이터 과학 및 웹 개발에 적합합니다. 2) C는 고성능과 정확한 제어를 가지고 있으며 게임 및 시스템 프로그래밍에 종종 사용됩니다.

파이썬 : 시간 약속과 학습 속도파이썬 : 시간 약속과 학습 속도Apr 17, 2025 am 12:03 AM

Python을 배우는 데 필요한 시간은 개인마다 다릅니다. 주로 이전 프로그래밍 경험, 학습 동기 부여, 학습 리소스 및 방법 및 학습 리듬의 영향을받습니다. 실질적인 학습 목표를 설정하고 실용적인 프로젝트를 통해 최선을 다하십시오.

파이썬 : 자동화, 스크립팅 및 작업 관리파이썬 : 자동화, 스크립팅 및 작업 관리Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

파이썬과 시간 : 공부 시간을 최대한 활용파이썬과 시간 : 공부 시간을 최대한 활용Apr 14, 2025 am 12:02 AM

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

파이썬 : 게임, Guis 등파이썬 : 게임, Guis 등Apr 13, 2025 am 12:14 AM

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
1 몇 달 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
1 몇 달 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
1 몇 달 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 채팅 명령 및 사용 방법
1 몇 달 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

WebStorm Mac 버전

WebStorm Mac 버전

유용한 JavaScript 개발 도구

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

VSCode Windows 64비트 다운로드

VSCode Windows 64비트 다운로드

Microsoft에서 출시한 강력한 무료 IDE 편집기

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는