딥 러닝 모델은 복잡한 비선형 관계를 학습할 수 있기 때문에 함수 근사 문제에 매우 적합합니다. 기본 아이디어는 신경망 모델을 훈련하여 입력-출력 데이터 쌍에서 패턴을 학습한 다음, 학습된 모델을 사용하여 새로운 입력 값의 출력을 예측하는 것입니다.
딥 러닝에서 신경망의 각 계층은 비선형 함수를 갖는 여러 뉴런으로 구성됩니다. 이러한 뉴런의 조합은 복잡한 함수 근사 작업을 달성할 수 있습니다.
다음은 함수 근사를 위해 딥 러닝을 사용하는 방법을 보여주는 간단한 코드 예제입니다.
import numpy as np import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense # 创建一个正弦函数的数据集 X = np.linspace(-np.pi, np.pi, 2000) Y = np.sin(X) # 创建一个具有两个隐藏层的神经网络 model = Sequential() model.add(Dense(10, input_dim=1, activation='relu')) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='linear')) # 编译模型 model.compile(loss='mse', optimizer='adam') # 训练模型 model.fit(X, Y, epochs=1000, verbose=0) # 在测试集上进行预测 X_test = np.linspace(-np.pi, np.pi, 200) Y_test = model.predict(X_test) # 绘制结果 plt.plot(X, Y) plt.plot(X_test, Y_test) plt.show()
이 코드 예제에서는 사인 함수의 데이터세트를 만들고 Keras 라이브러리를 사용하여 A 은닉층 신경망을 만듭니다. 활성화 함수로는 relu와 선형을, 손실 함수로는 평균 제곱 오차를 사용했습니다. 우리는 Adam을 최적화 알고리즘으로 사용하고 이를 데이터 세트에서 1000회 반복 학습합니다. 마지막으로 훈련된 모델을 사용하여 테스트 세트에 대한 예측을 수행하고 결과를 표시했습니다.
이 코드 예제는 딥 러닝이 어떻게 함수 근사를 수행할 수 있는지 보여줍니다. 훈련된 신경망은 사인 함수를 정확하게 근사할 수 있으며 예측 결과는 실제 함수에 매우 가깝습니다. 딥 러닝은 여러 비선형 함수를 결합하여 복잡한 기능적 관계를 근사화하고 최적화 알고리즘을 사용하여 신경망의 매개변수를 조정하여 근사치의 정확성을 향상시킵니다. 이러한 능력은 다양하고 복잡한 작업과 문제를 처리할 때 딥 러닝을 매우 강력하게 만듭니다.
간단히 말하면, 딥러닝은 매우 복잡한 함수 관계를 근사화할 수 있는 매우 강력한 함수 근사 방법이며 많은 분야에서 성공적으로 사용되었습니다.
위 내용은 코드 예제를 사용하여 딥 러닝의 함수 근사화 시연의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

AI 식품 준비 여전히 초기 사용 중이지만 AI 시스템은 음식 준비에 점점 더 많이 사용되고 있습니다. AI 구동 로봇은 부엌에서 햄버거를 뒤집기, 피자 만들기 또는 SA 조립과 같은 음식 준비 작업을 자동화하는 데 사용됩니다

소개 파이썬 기능에서 변수의 네임 스페이스, 범위 및 동작을 이해하는 것은 효율적으로 작성하고 런타임 오류 또는 예외를 피하는 데 중요합니다. 이 기사에서는 다양한 ASP를 탐구 할 것입니다

소개 생생한 그림과 조각으로 둘러싸인 아트 갤러리를 걷는 것을 상상해보십시오. 이제 각 작품에 질문을하고 의미있는 대답을 얻을 수 있다면 어떨까요? “어떤 이야기를하고 있습니까?

제품 케이던스를 계속하면서 이번 달 Mediatek은 새로운 Kompanio Ultra and Dimensity 9400을 포함한 일련의 발표를했습니다. 이 제품은 스마트 폰 용 칩을 포함하여 Mediatek 비즈니스의 전통적인 부분을 채우고 있습니다.

#1 Google은 Agent2agent를 시작했습니다 이야기 : 월요일 아침입니다. AI 기반 채용 담당자로서 당신은 더 똑똑하지 않고 더 똑똑하지 않습니다. 휴대 전화에서 회사의 대시 보드에 로그인합니다. 세 가지 중요한 역할이 공급되고, 검증되며, 예정된 FO가 있음을 알려줍니다.

나는 당신이되어야한다고 생각합니다. 우리 모두는 Psychobabble이 다양한 심리적 용어를 혼합하고 종종 이해할 수 없거나 완전히 무의미한 모듬 채터로 구성되어 있다는 것을 알고 있습니다. 당신이 fo를 뿌리기 위해해야 할 일

이번 주 발표 된 새로운 연구에 따르면 2022 년에 제조 된 플라스틱의 9.5%만이 재활용 재료로 만들어졌습니다. 한편, 플라스틱은 계속해서 매립지와 생태계에 전 세계에 쌓이고 있습니다. 그러나 도움이 진행 중입니다. 엥인 팀

최근 Enterprise Analytics 플랫폼 Alteryx의 CEO 인 Andy MacMillan과의 대화는 AI 혁명 에서이 비판적이면서도 저평가 된 역할을 강조했습니다. MacMillan에서 설명했듯이 원시 비즈니스 데이터와 AI-Ready Informat의 격차


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.
