찾다

가변 요인 추론

변동 추론은 복잡한 확률 모델의 사후 분포를 근사화하는 데 사용되는 확률 추론 방법입니다. 원래 문제를 최적화 문제로 변환하여 계산 복잡성을 줄입니다. 변분 추론은 기계 학습, 통계, 정보 이론 등의 분야에서 널리 사용됩니다.

왜 변주라고 부르나요?

변이(variation)라는 단어는 함수의 극값을 푸는 방법인 함수이론의 변이법에서 유래되었습니다. 변분 추론에서는 거리 측정법을 최소화하여 대략적인 사후 분포를 찾는데 이를 변분 거리라고 하므로 이 추론 방법을 변분 추론이라고 합니다.

변분 추론의 기본 아이디어는 근사 분포를 찾아 실제 사후 분포를 최대한 가깝게 근사화하는 것입니다. 이를 위해 매개변수화된 분포군 q(z;lambda)를 도입합니다. 여기서 z는 숨겨진 변수이고 람다는 얻어지는 매개변수입니다. 우리의 목표는 실제 사후 분포 p(z|x)와의 차이를 최소화하는 분포 q(z;lambda)를 찾는 것입니다. 분포 q(z;lambda)와 p(z|x) 사이의 거리를 측정하기 위해 일반적으로 KL 발산을 사용하여 측정되는 변동 거리를 사용합니다. KL 발산은 두 확률 분포 간의 차이를 측정한 것입니다. 구체적으로 KL 발산은 다음 공식으로 계산할 수 있습니다. KL(q(z;lambda) || p(z|x)) = int q(z;lambda) log frac{q(z;lambda)}{p(z|x)} dz KL 발산을 최소화함으로써 분포 q(z; 람다)와 실제 사후 분포 p(z|x) 사이의 차이를 최소화하는 매개변수 람다를 찾을 수 있습니다. 이러한 방식으로 후속 추론 및 예측 작업에 대한 대략적인 사후 분포를 얻을 수 있습니다. 요약하면, 변분추론의 기본 아이디어는 매개변수화된 분포군을 찾아 실제 사후 분포를 근사화하고, KL 발산을 사용하여 두 분포 간의 차이를 측정하는 것입니다. KL 발산을 최소화함으로써 후속 추론 작업에 대한 대략적인 사후 분포를 얻을 수 있습니다.

D_{KL}(q(z;lambda)||p(z|x))=int q(z;lambda)logfrac{q(z;lambda)}{p(z|x)}dz

q(z;lambda)가 p(z|x)와 동일한 경우에만 KL 발산은 음수가 아닙니다. KL 발산은 최소값 0을 취합니다. 따라서 우리의 목표는 KL 발산을 최소화하는 것으로 변환될 수 있습니다. 즉,

lambda^*=argmin_{lambda}D_{KL}(q(z;lambda)||p(z|x))

그러나 KL Divergence는 다루기 어렵고 복잡한 함수이므로 직접적으로 최소화할 수는 없습니다. 따라서 이 문제를 해결하려면 몇 가지 대략적인 방법을 사용해야 합니다.

변분 추론에서는 KL 발산을 근사화하기 위해 변분 하한이라는 기술을 사용합니다. 구체적으로, 먼저 KL 분기를 다음과 같이 분해합니다.

D_{KL}(q(z;lambda)||p(z|x))=E_{q(z;lambda)}[log q( z; lambda)-log p(z,x)]

그런 다음 새로운 분포 q(z|x)를 도입하고 Jensen 부등식을 사용하여 하한을 얻습니다.

log p( x)ge E_ {q(z|x)}[log p(x,z)-log q(z|x)]

여기서 log p(x)는 데이터 p(x, z)의 한계 확률입니다. 는 결합 확률 분포이고, q(z|x)는 대략적인 사후 분포입니다.

이 하한을 변형 하한 또는 ELBO(Evidence Lower Bound)라고 합니다. 근사 사후 분포의 매개변수 람다는 ELBO를 최대화하여 최적화할 수 있습니다.

lambda^*=argmax_{lambda}E_{ q (z|x;lambda)}[log p(x,z)-log q(z|x;lambda)]

이 최적화 문제는 경사 하강법과 같은 최적화 알고리즘으로 해결할 수 있습니다. 마지막으로, 우리가 얻은 근사 사후 분포 q(z|x)는 예측, 모델 선택 등과 같은 다양한 기대치를 계산하는 데 사용될 수 있습니다.

간단히 말하면, 변분 추론은 KL 발산을 최소화하는 기반의 확률 추론 방법으로, 변분 하한 기법을 도입하여 최적화 알고리즘을 사용하여 복잡한 확률 모델의 사후 분포를 근사화합니다.

위 내용은 가변 요인 추론의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 网易伏羲에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
Microsoft Work Trend Index 2025는 작업장 용량 변형을 보여줍니다Microsoft Work Trend Index 2025는 작업장 용량 변형을 보여줍니다Apr 24, 2025 am 11:19 AM

AI의 빠른 통합으로 악화 된 직장의 급성장 용량 위기는 점진적인 조정을 넘어 전략적 변화를 요구합니다. 이것은 WTI의 발견에 의해 강조됩니다. 직원의 68%가 작업량으로 어려움을 겪고 BUR로 이어

AI가 이해할 수 있습니까? 중국의 객실 논쟁은 아니오라고 말하지만 맞습니까?AI가 이해할 수 있습니까? 중국의 객실 논쟁은 아니오라고 말하지만 맞습니까?Apr 24, 2025 am 11:18 AM

John Searle의 중국 방 주장 : AI 이해에 대한 도전 Searle의 사고 실험은 인공 지능이 진정으로 언어를 이해할 수 있는지 또는 진정한 의식을 가질 수 있는지 직접 의문을 제기합니다. Chines를 무시하는 사람을 상상해보십시오

중국의 '스마트'AI 조수는 Microsoft Recall의 개인 정보 결함을 반향합니다중국의 '스마트'AI 조수는 Microsoft Recall의 개인 정보 결함을 반향합니다Apr 24, 2025 am 11:17 AM

중국의 기술 거대 기업은 서부에 비해 AI 개발 과정에서 다른 과정을 차트하고 있습니다. 기술 벤치 마크 및 API 통합에만 초점을 맞추는 대신 "스크린 인식"AI 비서 우선 순위를 정합니다.

Docker는 AI 모델 및 MCP 도구에 친숙한 컨테이너 워크 플로를 제공합니다.Docker는 AI 모델 및 MCP 도구에 친숙한 컨테이너 워크 플로를 제공합니다.Apr 24, 2025 am 11:16 AM

MCP : AI 시스템이 외부 도구에 액세스 할 수 있도록 권한을 부여합니다 MCP (Model Context Protocol)를 사용하면 AI 애플리케이션이 표준화 된 인터페이스를 통해 외부 도구 및 데이터 소스와 상호 작용할 수 있습니다. MCP를 통해 MCP는 인류에 의해 개발되고 주요 AI 제공 업체가 지원하는 언어 모델 및 에이전트가 사용 가능한 도구를 발견하고 적절한 매개 변수로 전화 할 수 있습니다. 그러나 환경 충돌, 보안 취약점 및 일관되지 않은 교차 ​​플랫폼 동작을 포함하여 MCP 서버 구현에는 몇 가지 과제가 있습니다. Forbes 기사 "Anthropic의 모델 컨텍스트 프로토콜은 AI 에이전트 개발의 큰 단계입니다."저자 : Janakiram MSVDocker는 컨테이너화를 통해 이러한 문제를 해결합니다. Docker Hub Infrastructure를 구축했습니다

6 억 달러 규모의 스타트 업을 구축하기 위해 6 개의 AI Street-Smart 전략 사용6 억 달러 규모의 스타트 업을 구축하기 위해 6 개의 AI Street-Smart 전략 사용Apr 24, 2025 am 11:15 AM

최첨단 기술을 활용하고 비즈니스 통제력을 발휘하여 통제력을 유지하면서 수익성이 높고 확장 가능한 회사를 창출하는 비전 기업가가 사용하는 6 가지 전략. 이 안내서는

Google 사진 업데이트 모든 사진에 대한 멋진 Ultra HDR 잠금 해제Google 사진 업데이트 모든 사진에 대한 멋진 Ultra HDR 잠금 해제Apr 24, 2025 am 11:14 AM

Google 사진의 새로운 Ultra HDR 도구 : 이미지 향상을위한 게임 체인저 Google Photos는 강력한 Ultra HDR 변환 도구를 도입하여 표준 사진을 활기차고 높은 동기 범위 이미지로 변환했습니다. 이 향상은 사진가 a

Descope는 AI 에이전트 통합을위한 인증 프레임 워크를 구축합니다Descope는 AI 에이전트 통합을위한 인증 프레임 워크를 구축합니다Apr 24, 2025 am 11:13 AM

기술 아키텍처는 새로운 인증 문제를 해결합니다 에이전트 Identity Hub는 문제를 해결합니다. 많은 조직이 AI 에이전트 구현을 시작한 후에 만 ​​기존 인증 방법이 기계 용으로 설계되지 않았다는 것을 발견 한 후에 만 ​​발견합니다.

Google Cloud 다음 2025 및 현대 작업의 연결된 미래Google Cloud 다음 2025 및 현대 작업의 연결된 미래Apr 24, 2025 am 11:12 AM

(참고 : Google은 회사 인 Moor Insights & Strategy의 자문 고객입니다.) AI : 실험에서 Enterprise Foundation까지 Google Cloud Next 2025는 실험 기능에서 엔터프라이즈 기술의 핵심 구성 요소까지 AI의 진화를 보여주었습니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

Dreamweaver Mac版

Dreamweaver Mac版

시각적 웹 개발 도구

VSCode Windows 64비트 다운로드

VSCode Windows 64비트 다운로드

Microsoft에서 출시한 강력한 무료 IDE 편집기

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.