Pandas를 사용하여 검증된 데이터를 필터링하는 방법
Pandas는 Python의 강력한 데이터 분석 라이브러리로, 풍부한 데이터 처리 및 작업 기능을 제공합니다. 실제 데이터 분석 및 처리 과정에서 특정 조건에 맞는 데이터를 찾기 위해 데이터를 필터링해야 하는 경우가 많습니다. 이 기사에서는 데이터 필터링에 Pandas를 사용하는 방법을 소개하고 특정 코드 예제를 제공합니다.
1. Pandas 라이브러리 가져오기
Pandas를 사용하기 전에 먼저 관련 라이브러리를 가져와야 합니다. 다음 명령을 사용하여 Pandas 라이브러리를 가져올 수 있습니다.
import pandas as pd
2. 데이터 프레임 생성
데이터를 필터링하기 전에 먼저 데이터 프레임을 생성해야 합니다. 데이터 프레임은 Excel의 테이블과 유사하게 Pandas에서 일반적으로 사용되는 데이터 구조로, 데이터를 쉽게 저장하고 처리할 수 있습니다. 다음은 간단한 데이터 프레임을 생성하는 예제 코드입니다:
data = {'Name': ['Zhang San', 'Li Si', 'Wang Wu', 'Zhao Liu'],
'Age': [25, 30, 35, 40], 'Gender': ['男', '女', '男', '女'], 'Salary': [5000, 6000, 7000, 8000]}
df = pd .DataFrame(데이터)
3. 조건에 따라 데이터 필터링
Pandas에서는 조건에 따라 데이터를 필터링하는 몇 가지 방법을 사용할 수 있습니다. 다음은 일반적으로 사용되는 몇 가지 방법입니다.
- loc 방법
loc 방법은 행 및 열 레이블을 기반으로 데이터를 필터링할 수 있습니다. 다음은 loc 메소드를 사용하여 30년이 넘은 데이터를 필터링하는 샘플 코드입니다.
filtered_data = df.loc[df['Age'] > 30]
- iloc 메소드
iloc 메소드는 다음과 같습니다. 행과 열 인덱스를 기준으로 데이터 필터링을 수행합니다. 다음은 iloc 메소드를 사용하여 행 3의 데이터를 필터링하는 샘플 코드입니다.
filtered_data = df.iloc[2]
- 조건부 필터링
위 방법 외에도 조건식을 사용할 수도 있습니다. 데이터를 필터링합니다. 다음은 조건부 필터링을 사용한 샘플 코드입니다.
filtered_data = df[df['Gender'] == 'Male' & df['Salary'] > 6000]
4. 필터링 후 출력합니다. 데이터 필터링 후 print 메소드를 사용하여 필터링된 결과를 출력할 수 있습니다. 다음은 필터링된 결과를 출력하는 샘플 코드입니다.
print(filtered_data)
위의 코드 예제를 사용하면 Pandas를 사용하여 기준에 맞는 데이터를 쉽게 필터링할 수 있습니다. 실제 데이터 분석 및 처리에 있어서 Pandas의 이러한 기능은 많은 시간과 에너지를 절약해 주고, 필요한 데이터를 빠르고 정확하게 찾을 수 있도록 도와줍니다.
요약: 이 글에서는 레이블 및 인덱스 기반 필터링, 조건식을 사용한 필터링 등 데이터 필터링에 Pandas를 사용하는 기본 방법을 소개합니다. 이 내용이 데이터 분석 및 처리에 Pandas를 더 잘 활용하는 데 도움이 되기를 바랍니다. 실제 애플리케이션에서는 특정 요구 사항에 따라 추가 데이터 처리 및 분석을 위해 Pandas의 다른 기능을 결합할 수도 있습니다.
위 내용은 Pandas를 사용하여 조건에 맞는 데이터를 추출하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python의 실제 응용 프로그램에는 데이터 분석, 웹 개발, 인공 지능 및 자동화가 포함됩니다. 1) 데이터 분석에서 Python은 Pandas 및 Matplotlib를 사용하여 데이터를 처리하고 시각화합니다. 2) 웹 개발에서 Django 및 Flask 프레임 워크는 웹 응용 프로그램 생성을 단순화합니다. 3) 인공 지능 분야에서 Tensorflow와 Pytorch는 모델을 구축하고 훈련시키는 데 사용됩니다. 4) 자동화 측면에서 파이썬 스크립트는 파일 복사와 같은 작업에 사용할 수 있습니다.

Python은 데이터 과학, 웹 개발 및 자동화 스크립팅 필드에 널리 사용됩니다. 1) 데이터 과학에서 Python은 Numpy 및 Pandas와 같은 라이브러리를 통해 데이터 처리 및 분석을 단순화합니다. 2) 웹 개발에서 Django 및 Flask 프레임 워크를 통해 개발자는 응용 프로그램을 신속하게 구축 할 수 있습니다. 3) 자동 스크립트에서 Python의 단순성과 표준 라이브러리가 이상적입니다.

Python의 유연성은 다중 파리가 지원 및 동적 유형 시스템에 반영되며, 사용 편의성은 간단한 구문 및 풍부한 표준 라이브러리에서 나옵니다. 유연성 : 객체 지향, 기능 및 절차 프로그래밍을 지원하며 동적 유형 시스템은 개발 효율성을 향상시킵니다. 2. 사용 편의성 : 문법은 자연 언어에 가깝고 표준 라이브러리는 광범위한 기능을 다루며 개발 프로세스를 단순화합니다.

Python은 초보자부터 고급 개발자에 이르기까지 모든 요구에 적합한 단순성과 힘에 호의적입니다. 다목적 성은 다음과 같이 반영됩니다. 1) 배우고 사용하기 쉽고 간단한 구문; 2) Numpy, Pandas 등과 같은 풍부한 라이브러리 및 프레임 워크; 3) 다양한 운영 체제에서 실행할 수있는 크로스 플랫폼 지원; 4) 작업 효율성을 향상시키기위한 스크립팅 및 자동화 작업에 적합합니다.

예, 하루에 2 시간 후에 파이썬을 배우십시오. 1. 합리적인 학습 계획 개발, 2. 올바른 학습 자원을 선택하십시오. 3. 실습을 통해 학습 된 지식을 통합하십시오. 이 단계는 짧은 시간 안에 Python을 마스터하는 데 도움이 될 수 있습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

Dreamweaver Mac版
시각적 웹 개발 도구
