찾다
백엔드 개발파이썬 튜토리얼Pandas 데이터 정리에 대한 중요한 팁을 공개하세요!

Pandas 데이터 정리에 대한 중요한 팁을 공개하세요!

Jan 24, 2024 am 09:43 AM
기능pandas데이터 정리

Pandas 데이터 정리에 대한 중요한 팁을 공개하세요!

Pandas 데이터 정리 기술 공개!

소개:

데이터 분석 및 기계 학습에서 데이터 정리는 데이터를 필요한 형식과 구조로 구성하기 위해 데이터 세트를 전처리, 변환 및 필터링하는 매우 중요한 단계입니다. Pandas는 Python에서 가장 인기 있고 강력한 데이터 분석 라이브러리 중 하나이며 풍부하고 유연한 데이터 정리 도구와 작업 방법을 제공합니다. 이 기사에서는 팬더 데이터 정리의 몇 가지 기본 기술을 공개하고 독자가 이러한 기술을 더 잘 이해하고 적용할 수 있도록 구체적인 코드 예제를 제공합니다.

1. 팬더 라이브러리 및 데이터 세트 가져오기

시작하기 전에 먼저 팬더 라이브러리를 설치해야 합니다. 설치가 완료된 후 다음 코드를 사용하여 Pandas 라이브러리를 가져오고 정리해야 하는 데이터 세트를 로드할 수 있습니다.

import pandas as pd

# 导入数据集
data = pd.read_csv('data.csv')

2. 데이터 세트 보기

데이터를 정리하기 전에 먼저 데이터 세트의 구조와 내용을 이해해야 합니다. pandas는 head(), tail(), shapeinfo( )등 <code>head()tail()shapeinfo()等。

代码示例:

# 查看前五行数据
print(data.head())

# 查看后五行数据
print(data.tail())

# 查看数据集的维度
print(data.shape)

# 查看数据集的基本信息
print(data.info())

三、处理缺失值

缺失值是数据集中经常遇到的问题之一,而且在真实的数据集中很常见。pandas提供了处理缺失值的多种方法。常见的处理缺失值的方法有删除、填充和插值。

  1. 删除缺失值

删除缺失值是最简单的处理方法之一,但需要慎重使用。在pandas中,可以使用dropna()函数来删除包含缺失值的行或列。

代码示例:

# 删除包含缺失值的行
data.dropna(axis=0, inplace=True)

# 删除包含缺失值的列
data.dropna(axis=1, inplace=True)
  1. 填充缺失值

填充缺失值是另一种常用的处理方法,它可以用一个常数或其他数据集中的值来填充缺失值。在pandas中,可以使用fillna()函数来填充缺失值。

代码示例:

# 使用0填充缺失值
data.fillna(0, inplace=True)

# 使用平均值填充缺失值
data.fillna(data.mean(), inplace=True)
  1. 插值缺失值

插值缺失值是一种更高级的处理方法,它可以根据已知数据的特征来推测缺失值。在pandas中,可以使用interpolate()函数来进行插值处理。

代码示例:

# 线性插值处理缺失值
data.interpolate(method='linear', inplace=True)

# 拟合插值处理缺失值
data.interpolate(method='quadratic', inplace=True)

四、处理重复值

重复值是另一个常见的数据集问题,它可能会导致数据分析和建模的偏差。pandas提供了几个函数来处理重复值,包括duplicated()drop_duplicates()等。

  1. 查找重复值

可以使用duplicated()函数来查找数据集中的重复值。该函数返回一个布尔类型的Series对象,其中包含了每个元素是否重复的信息。

代码示例:

# 查找重复值
duplicated_data = data.duplicated()

# 打印重复值
print(duplicated_data)
  1. 删除重复值

可以使用drop_duplicates()函数来删除数据集中的重复值。该函数返回一个经过去重后的新数据集。

代码示例:

# 删除重复值
data.drop_duplicates(inplace=True)

五、处理异常值

异常值是数据集中的异常观测值,它可能会对数据分布和模型拟合产生不良影响。pandas提供了一些函数和方法来识别和处理异常值,包括箱线图、z-score和IQR等。

  1. 箱线图

箱线图是一种常用的异常值检测方法,它可以用来判断数据集中是否存在异常值。可以使用boxplot()函数来绘制箱线图,并通过观察箱线图中的离群点来识别异常值。

代码示例:

# 绘制箱线图
data.boxplot(column='value', figsize=(10, 6))

# 显示图像
plt.show()
  1. z-score

z-score是一种统计概念,它可以用来标准化数据并判断观测值是否偏离了平均值。在pandas中,可以使用zscore()函数来计算z-score,并通过设定阈值来判断是否存在异常值。

代码示例:

# 计算z-score
z_scores = (data - data.mean()) / data.std()

# 判断是否存在异常值
outliers = z_scores[(z_scores > 3) | (z_scores < -3)]

# 显示异常值
print(outliers)
  1. IQR

IQR(Inter-Quartile Range)是一种计算概念,它可以通过计算数据集的四分位差来确定异常值的范围。在pandas中,可以使用quantile()函数来计算四分位数,然后使用IQR公式来判断是否存在异常值。

代码示例:

# 计算四分位差
Q1 = data.quantile(0.25)
Q3 = data.quantile(0.75)
IQR = Q3 - Q1

# 判断是否存在异常值
outliers = data[((data < (Q1 - 1.5 * IQR)) | (data > (Q3 + 1.5 * IQR))).any(axis=1)]

# 显示异常值
print(outliers)

六、转换数据类型

数据类型是数据集中一个重要的属性,它涉及到数据的存储方式、计算方式和可视化方式等。在pandas中,可以使用astype()函数来转换数据类型。

代码示例:

# 将字符串类型转换为整数类型
data['column'] = data['column'].astype(int)

# 将浮点型转换为整数类型
data['column'] = data['column'].astype(int)

# 将字符串类型转换为日期类型
data['column'] = pd.to_datetime(data['column'])

七、其他常用操作

除了上述的数据清洗技巧外,pandas还提供了其他一些常用的数据清洗操作,包括重命名列、拆分列和合并列等。

  1. 重命名列

可以使用rename()函数来重命名数据集中的列。

代码示例:

# 重命名列
data.rename(columns={'old_name': 'new_name'}, inplace=True)
  1. 拆分列

可以使用str.split()函数来将含有多个值的列拆分成多个列。

代码示例:

# 拆分列
new_columns = data['column'].str.split(',', expand=True)

# 重新命名新列
new_columns.columns = ['column1', 'column2', 'column3']

# 合并新列到数据集
data = pd.concat([data, new_columns], axis=1)
  1. 合并列

可以使用pd.merge()

코드 예:

# 新数据集1
data1 = pd.DataFrame({'key': ['A', 'B', 'C'], 'value1': [1, 2, 3]})

# 新数据集2
data2 = pd.DataFrame({'key': ['A', 'B', 'C'], 'value2': [4, 5, 6]})

# 合并数据集
merged_data = pd.merge(data1, data2, on='key')

# 打印合并后的数据集
print(merged_data)

3. 결측값 처리

결측값은 데이터 세트에서 자주 발생하는 문제 중 하나이며 실제 데이터 세트에서는 매우 일반적입니다. Pandas는 누락된 값을 처리하는 여러 가지 방법을 제공합니다. 결측값을 처리하는 일반적인 방법으로는 삭제, 채우기, 보간 등이 있습니다. 🎜
  1. 결측값 삭제
🎜결측값 삭제는 가장 간단한 처리 방법 중 하나이지만 주의해서 사용해야 합니다. Pandas에서는 dropna() 함수를 사용하여 누락된 값이 포함된 행이나 열을 삭제할 수 있습니다. 🎜🎜코드 예: 🎜rrreee
  1. 결측값 채우기
🎜결측값 채우기는 또 다른 일반적인 처리 방법으로, 상수나 기타 데이터를 사용할 수 있습니다. 누락된 값을 채울 값입니다. Pandas에서는 fillna() 함수를 사용하여 누락된 값을 채울 수 있습니다. 🎜🎜코드 예: 🎜rrreee
  1. 결측값 보간
🎜결측값 보간은 데이터의 특성을 기반으로 할 수 있는 보다 발전된 처리 방법입니다. 누락된 값을 대치하기 위해 알려진 데이터. Pandas에서는 interpolate() 함수를 사용하여 보간 처리를 수행할 수 있습니다. 🎜🎜코드 예: 🎜rrreee🎜4. 중복 값 처리🎜🎜중복 값은 또 다른 일반적인 데이터 세트 문제로, 데이터 분석 및 모델링에 편향이 발생할 수 있습니다. pandas는 duplicated()drop_duplicates() 등을 포함하여 중복 값을 처리하는 여러 함수를 제공합니다. 🎜
  1. 중복 값 찾기
🎜 duplicated() 함수를 사용하여 데이터 세트에서 중복 값을 찾을 수 있습니다. 이 함수는 각 요소가 반복되는지 여부에 대한 정보가 포함된 Boolean Series 객체를 반환합니다. 🎜🎜코드 예: 🎜rrreee
  1. 중복 값 삭제
🎜drop_duplicates() 함수를 사용하여 중복 값을 삭제할 수 있습니다. 데이터 세트에서 . 이 함수는 중복이 제거된 새로운 데이터 세트를 반환합니다. 🎜🎜코드 예: 🎜rrreee🎜 5. 이상값 처리🎜🎜이상값은 데이터 세트의 비정상적인 관측값으로, 데이터 분포 및 모델 피팅에 부정적인 영향을 미칠 수 있습니다. Pandas는 상자 그림, z-점수, IQR 등을 포함하여 이상값을 식별하고 처리하는 몇 가지 기능과 방법을 제공합니다. 🎜
  1. 박스 플롯
🎜박스 플롯은 일반적으로 사용되는 이상값 감지 방법으로, 데이터 세트에 이상값이 있는지 확인하는 데 사용할 수 있습니다. boxplot() 함수를 사용하면 상자 그림을 그리고 상자 그림에서 이상값을 관찰하여 이상값을 식별할 수 있습니다. 🎜🎜코드 예: 🎜rrreee
  1. z-score
🎜z-score는 데이터를 표준화하고 관찰 결과가 다음과 같은지 여부를 결정하는 데 사용할 수 있는 통계 개념입니다. 평균과의 편차. Pandas에서는 zscore() 함수를 사용하여 z-score를 계산하고 임계값을 설정하여 이상치가 있는지 확인할 수 있습니다. 🎜🎜코드 예: 🎜rrreee
  1. IQR
🎜IQR(Inter-Quartile Range)은 데이터의 1/4을 계산하여 계산할 수 있는 계산 개념입니다. 이상치의 범위를 결정하기 위해 차이를 설정합니다. Pandas에서는 Quantile() 함수를 사용하여 사분위수를 계산한 다음 IQR 공식을 사용하여 이상값이 있는지 확인할 수 있습니다. 🎜🎜코드 예: 🎜rrreee🎜 6. 데이터 유형 변환🎜🎜데이터 유형은 데이터의 저장 방법, 계산 방법 및 시각화 방법을 포함하는 데이터 세트의 중요한 속성입니다. Pandas에서는 astype() 함수를 사용하여 데이터 유형을 변환할 수 있습니다. 🎜🎜코드 예: 🎜rrreee🎜7. 기타 일반적인 작업🎜🎜위의 데이터 정리 기술 외에도 Pandas는 열 이름 바꾸기, 열 분할 및 열 병합을 포함하여 일반적으로 사용되는 몇 가지 다른 데이터 정리 작업도 제공합니다. 🎜
  1. 열 이름 바꾸기
🎜 rename() 함수를 사용하여 데이터 세트의 열 이름을 바꿀 수 있습니다. 🎜🎜코드 예: 🎜rrreee
  1. 열 분할
🎜str.split() 함수를 사용하여 다음을 포함하는 열을 분할할 수 있습니다. 다중 값 열이 여러 열로 분할됩니다. 🎜🎜코드 예: 🎜rrreee
  1. 열 병합
🎜 pd.merge() 함수를 사용하여 여러 열을 병합할 수 있습니다. 데이터 세트 열에 있습니다. 🎜🎜코드 예: 🎜rrreee🎜요약: 🎜

이 문서에서는 일반적으로 사용되는 Pandas 데이터 정리 기술을 소개하고 구체적인 코드 예제를 제공합니다. 이러한 기술에는 누락된 값 처리, 중복 값 처리, 이상값 처리, 데이터 유형 변환 및 기타 일반적인 작업이 포함됩니다. 이러한 기술을 배우고 적용함으로써 독자는 데이터를 더 잘 처리하고 준비할 수 있으며 후속 데이터 분석 및 모델링을 위한 견고한 기반을 마련할 수 있습니다. 물론, 이 글에서 소개한 기술 외에도 pandas에는 다른 많은 기능과 방법이 있으며, 독자들은 이를 자신의 필요와 실제 상황에 따라 더 배우고 적용할 수 있습니다.

위 내용은 Pandas 데이터 정리에 대한 중요한 팁을 공개하세요!의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Numpy를 사용하여 다차원 배열을 어떻게 생성합니까?Numpy를 사용하여 다차원 배열을 어떻게 생성합니까?Apr 29, 2025 am 12:27 AM

다음 단계를 통해 Numpy를 사용하여 다차원 배열을 만들 수 있습니다. 1) Numpy.array () 함수를 사용하여 NP.Array ([[1,2,3], [4,5,6]]과 같은 배열을 생성하여 2D 배열을 만듭니다. 2) np.zeros (), np.ones (), np.random.random () 및 기타 함수를 사용하여 특정 값으로 채워진 배열을 만듭니다. 3) 서브 어레이의 길이가 일관되고 오류를 피하기 위해 배열의 모양과 크기 특성을 이해하십시오. 4) NP.Reshape () 함수를 사용하여 배열의 모양을 변경하십시오. 5) 코드가 명확하고 효율적인지 확인하기 위해 메모리 사용에주의를 기울이십시오.

Numpy 어레이에서 '방송'의 개념을 설명하십시오.Numpy 어레이에서 '방송'의 개념을 설명하십시오.Apr 29, 2025 am 12:23 AM

BroadcastingInnumpyIsamethodtoperformoperationsonArraysoffferentShapesByAutomicallyAligningThem.itsimplifiesCode, enourseadability, andboostsperformance.here'showitworks : 1) smalraysarepaddedwithonestomatchdimenseare

데이터 저장을 위해 목록, Array.Array 및 Numpy Array 중에서 선택하는 방법을 설명하십시오.데이터 저장을 위해 목록, Array.Array 및 Numpy Array 중에서 선택하는 방법을 설명하십시오.Apr 29, 2025 am 12:20 AM

forpythondatastorage, chooselistsforflexibilitywithmixeddatatypes, array.arrayformemory-effic homogeneousnumericaldata, andnumpyarraysforadvancednumericalcomputing.listsareversatilebutlessefficipforlargenumericaldatasets.arrayoffersamiddlegro

파이썬 목록을 사용하는 것이 배열을 사용하는 것보다 더 적절한 시나리오의 예를 제시하십시오.파이썬 목록을 사용하는 것이 배열을 사용하는 것보다 더 적절한 시나리오의 예를 제시하십시오.Apr 29, 2025 am 12:17 AM

pythonlistsarebetterthanarraysformanagingDiversEdatatypes.1) 1) listscanholdementsofdifferentTypes, 2) thearedynamic, weantEasyAdditionSandremovals, 3) wefferintufiveOperationsLikEslicing, but 4) butiendess-effectorlowerggatesets.

파이썬 어레이에서 요소에 어떻게 액세스합니까?파이썬 어레이에서 요소에 어떻게 액세스합니까?Apr 29, 2025 am 12:11 AM

toaccesselementsInapyThonArray : my_array [2] AccessHetHirdElement, returning3.pythonuseszero 기반 인덱싱 .1) 사용 positiveAndnegativeIndexing : my_list [0] forthefirstelement, my_list [-1] forstelast.2) audeeliciforarange : my_list

파이썬에서 튜플 이해력이 가능합니까? 그렇다면, 어떻게 그리고 그렇지 않다면?파이썬에서 튜플 이해력이 가능합니까? 그렇다면, 어떻게 그리고 그렇지 않다면?Apr 28, 2025 pm 04:34 PM

기사는 구문 모호성으로 인해 파이썬에서 튜플 이해의 불가능성에 대해 논의합니다. 튜플을 효율적으로 생성하기 위해 튜플 ()을 사용하는 것과 같은 대안이 제안됩니다. (159 자)

파이썬의 모듈과 패키지는 무엇입니까?파이썬의 모듈과 패키지는 무엇입니까?Apr 28, 2025 pm 04:33 PM

이 기사는 파이썬의 모듈과 패키지, 차이점 및 사용법을 설명합니다. 모듈은 단일 파일이고 패키지는 __init__.py 파일이있는 디렉토리이며 관련 모듈을 계층 적으로 구성합니다.

파이썬에서 Docstring이란 무엇입니까?파이썬에서 Docstring이란 무엇입니까?Apr 28, 2025 pm 04:30 PM

기사는 Python의 Docstrings, 사용법 및 혜택에 대해 설명합니다. 주요 이슈 : 코드 문서 및 접근성에 대한 문서의 중요성.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

WebStorm Mac 버전

WebStorm Mac 버전

유용한 JavaScript 개발 도구

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)