찾다
기술 주변기기일체 포함기계 학습에 Random Forest 적용

기계 학습에 Random Forest 적용

Jan 24, 2024 am 09:00 AM
기계 학습

기계 학습에 Random Forest 적용

랜덤 포레스트는 다중 분류 트리를 사용하여 입력 벡터를 분류합니다. 각 트리에는 분류 결과가 있으며, 가장 많은 표를 얻은 분류가 최종 결과로 선택됩니다.

위는 Random Forest에 대한 소개입니다. 다음으로 Random Forest 알고리즘의 작업 흐름을 살펴보겠습니다.

1단계: 먼저 데이터 세트에서 무작위 샘플을 선택합니다.

2단계: 각 샘플에 대해 알고리즘은 결정 트리를 생성합니다. 그러면 각 의사결정 트리의 예측 결과가 얻어집니다.

3단계: 이 단계에서 예상되는 각 결과가 투표됩니다.

4단계: 마지막으로 가장 많은 표를 얻은 예측 결과를 최종 예측 결과로 선택합니다.

랜덤 포레스트 알고리즘의 원리

랜덤 포레스트 방법의 장점

  • 다양한 의사결정 트리의 출력을 평균화하거나 통합하여 과적합 문제를 해결합니다.
  • 랜덤 포레스트는 광범위한 데이터 항목에 대해 단일 의사결정 트리보다 더 나은 성능을 발휘합니다.
  • 랜덤 포레스트 알고리즘은 대량의 데이터가 누락된 경우에도 높은 정확도를 유지합니다.

머신러닝에서 Random Forest의 특징

  • 현재 사용 가능한 가장 정확한 알고리즘입니다.
  • 대규모 데이터베이스에 적합합니다.
  • 수만 개의 입력 변수를 하나도 삭제하지 않고 처리할 수 있습니다.
  • 분류에서 여러 변수의 중요성을 계산합니다.
  • 숲이 성장함에 따라 일반화 오류에 대한 내부 편견 추정치가 생성됩니다.
  • 대규모 데이터 손실이 발생한 경우에도 정확성을 유지하는 손실된 데이터를 추측하는 좋은 전략을 제공합니다.
  • 준 모집단에서 고르지 않은 데이터 세트의 부정확성을 조정하는 방법이 포함되어 있습니다.
  • 생성된 숲은 저장되어 향후 다른 데이터로 활용될 수 있습니다.
  • 변수와 범주 간의 관계를 보여주는 프로토타입을 만듭니다.
  • 클러스터링, 이상값 감지 또는 데이터에 대한 매력적인 보기 제공(규모 조정)에 유용한 예제 쌍 사이의 거리를 계산합니다.
  • 레이블이 지정되지 않은 데이터는 위 기능을 사용하여 비지도 클러스터링, 데이터 시각화 및 이상값 식별을 생성하는 데 사용할 수 있습니다.
  • 변수 상호 작용을 실험적으로 찾는 메커니즘을 제공합니다.

특정 특성을 가진 데이터 세트에 대해 랜덤 포레스트 모델을 훈련할 때 결과 모델 객체는 훈련 과정에서 가장 관련성이 높은 특성, 즉 대상에 가장 큰 영향을 미치는 특성을 알려줄 수 있습니다. 변하기 쉬운. 이 변수의 중요성은 랜덤 포레스트의 각 트리에 대해 결정된 다음 포리스트 전체에서 평균을 구하여 각 기능에 대한 단일 측정값을 생성합니다. 이 측정항목은 관련성에 따라 기능을 정렬하고 이러한 기능만 사용하여 랜덤 포레스트 모델을 재교육하는 데 사용할 수 있습니다.

위 내용은 기계 학습에 Random Forest 적용의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 网易伏羲에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
외삽에 대한 포괄적 인 가이드외삽에 대한 포괄적 인 가이드Apr 15, 2025 am 11:38 AM

소개 매일 몇 주 만에 작물의 진행 상황을 관찰하는 농부가 있다고 가정합니다. 그는 성장률을보고 몇 주 안에 식물이 얼마나 키가 커질 수 있는지에 대해 숙고하기 시작합니다. Th

소프트 AI의 부상과 오늘날 비즈니스의 의미소프트 AI의 부상과 오늘날 비즈니스의 의미Apr 15, 2025 am 11:36 AM

Soft AI-대략적인 추론, 패턴 인식 및 유연한 의사 결정을 사용하여 구체적이고 좁은 작업을 수행하도록 설계된 AI 시스템으로 정의 된 것은 모호성을 수용하여 인간과 같은 사고를 모방하려고합니다. 그러나 이것이 바이러스의 의미는 무엇입니까?

AI 국경을위한 진화 보안 프레임 워크AI 국경을위한 진화 보안 프레임 워크Apr 15, 2025 am 11:34 AM

클라우드 컴퓨팅이 클라우드 네이티브 보안 도구로의 전환이 필요했기 때문에 AI는 AI의 고유 한 요구를 위해 특별히 설계된 새로운 유형의 보안 솔루션을 요구합니다. 클라우드 컴퓨팅 및 보안 수업의 상승이 배웠습니다 th

3 가지 방법 생성 AI 기업가를 증폭시킵니다 : 평균을 조심하십시오!3 가지 방법 생성 AI 기업가를 증폭시킵니다 : 평균을 조심하십시오!Apr 15, 2025 am 11:33 AM

기업가와 AI 및 생성 AI를 사용하여 비즈니스를 개선합니다. 동시에, 모든 기술과 마찬가지로 생성 AI를 기억하는 것이 중요합니다. 앰프는 앰프입니다. 엄격한 2024 연구 o

Andrew Ng의 모델 임베딩에 대한 새로운 단기 과정Andrew Ng의 모델 임베딩에 대한 새로운 단기 과정Apr 15, 2025 am 11:32 AM

임베딩 모델의 힘 잠금 해제 : Andrew Ng의 새로운 코스에 대한 깊은 다이빙 기계가 완벽한 정확도로 질문을 이해하고 응답하는 미래를 상상해보십시오. 이것은 공상 과학이 아닙니다. AI의 발전 덕분에 R이되었습니다

대형 언어 모델 (LLMS)에서 환각이 불가피합니까?대형 언어 모델 (LLMS)에서 환각이 불가피합니까?Apr 15, 2025 am 11:31 AM

대형 언어 모델 (LLM) 및 환각의 피할 수없는 문제 Chatgpt, Claude 및 Gemini와 같은 AI 모델을 사용했을 것입니다. 이들은 대규모 텍스트 데이터 세트에 대해 교육을받은 강력한 AI 시스템의 대형 언어 모델 (LLM)의 예입니다.

60% 문제 - AI 검색이 트래픽을 배출하는 방법60% 문제 - AI 검색이 트래픽을 배출하는 방법Apr 15, 2025 am 11:28 AM

최근의 연구에 따르면 AI 개요는 산업 및 검색 유형에 따라 유기 트래픽이 15-64% 감소 할 수 있습니다. 이러한 급격한 변화로 인해 마케팅 담당자는 디지털 가시성에 관한 전체 전략을 재고하게합니다. 새로운

AI R & D의 중심에 인간 번성을하는 MIT Media LabAI R & D의 중심에 인간 번성을하는 MIT Media LabApr 15, 2025 am 11:26 AM

Elon University의 Digital Future Center를 상상 한 최근 보고서는 거의 300 명의 글로벌 기술 전문가를 조사했습니다. 결과적인 보고서 인‘2035 년에 인간이되는 것’은 대부분 AI 시스템의 심화가 T에 대한 우려가 있다고 결론지었습니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
1 몇 달 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.