찾다
백엔드 개발파이썬 튜토리얼SORT 추적 알고리즘과 Python 구현 예에 대한 간략한 소개

SORT 추적 알고리즘과 Python 구현 예에 대한 간략한 소개

SORT(Simple Online and Realtime Tracking)는 Kalman 필터 기반의 표적 추적 알고리즘으로, 실시간 장면에서 움직이는 표적을 강력하게 추적할 수 있습니다. SORT 알고리즘은 원래 Alex Bewley 등이 2016년에 제안했습니다. 영상 감시, 자율 주행, 로봇 내비게이션 등과 같은 컴퓨터 비전 분야의 다양한 응용 분야에서 널리 사용되었습니다.

SORT 알고리즘은 주로 칼만 필터링과 헝가리어 알고리즘이라는 두 가지 핵심 아이디어를 기반으로 합니다. 칼만 필터는 시스템 상태를 추정하기 위한 알고리즘으로, 시스템의 동적 모델과 센서 측정을 사용하여 시스템 상태를 예측하고 업데이트함으로써 상태 추정의 정확도를 향상시킬 수 있습니다. 헝가리 알고리즘은 이분 그래프에서 최대 가중치 매칭 문제를 해결하는 데 사용되는 알고리즘입니다. 이 알고리즘은 주어진 이분 그래프에서 최대 가중치 매칭을 찾을 수 있습니다.

SORT 알고리즘의 주요 단계는 다음과 같습니다.

대상 탐지: 대상 탐지 알고리즘(예: YOLO, SSD 등)을 사용하여 현재 프레임에서 대상 정보를 추출합니다.

상태 예측: 추적된 각 대상에 대해 Kalman 필터를 사용하여 상태를 예측합니다.

데이터 연관: 현재 프레임의 예측 상태와 대상 정보를 기반으로 헝가리 알고리즘을 사용하여 데이터 연관을 수행하여 현재 프레임에서 추적된 각 대상에 해당하는 대상을 찾습니다.

상태 업데이트: 추적된 각 대상에 대해 Kalman 필터를 사용하여 상태를 업데이트합니다.

타겟 출력: 추적된 각 타겟의 상태 정보와 추적 결과를 출력합니다.

컴퓨터 비전에서 SORT 알고리즘은 다양한 표적 추적 시나리오에 적용될 수 있습니다. 예를 들어, 비디오 감시에서 SORT 알고리즘은 움직이는 대상을 실시간으로 추적할 수 있으므로 현장의 비정상적인 동작을 감지하고 조기 경고할 수 있습니다. 자율 주행 분야에서 SORT 알고리즘은 다른 차량, 보행자 및 기타 교통 참가자를 추적하여 차량의 자율 주행 및 장애물 회피를 달성할 수 있습니다. 로봇 탐색에서 SORT 알고리즘은 움직이는 목표를 추적하여 로봇의 자율 탐색 및 장애물 회피를 달성할 수 있습니다.

다음은 Python으로 구현한 간단한 예제 코드입니다.

#python
import numpy as np
from filterpy.kalman import KalmanFilter
from scipy.optimize import linear_sum_assignment

class Track:

def init(self,prediction,track_id,track_lifetime):
    self.prediction=np.atleast_2d(prediction)
    self.track_id=track_id
    self.track_lifetime=track_lifetime
    self.age=0
    self.total_visible_count=1
    self.consecutive_invisible_count=0

def predict(self, kf):
    self.prediction = kf.predict()
    self.age += 1

def update(self, detection, kf):
    self.prediction = kf.update(detection)
    self.total_visible_count += 1
    self.consecutive_invisible_count = 0

def mark_missed(self):
    self.consecutive_invisible_count += 1

def is_dead(self):
    return self.consecutive_invisible_count >= self.track_lifetime

class Tracker:

def init(self,track_lifetime,detection_variance,process_variance):
    self.next_track_id=0
    self.tracks=[]
    self.track_lifetime=track_lifetime
    self.detection_variance=detection_variance
    self.process_variance=process_variance
    self.kf=KalmanFilter(dim_x=4,dim_z=2)
    self.kf.F=np.array([[1,0,1,0],
                    [0,1,0,1],
                    [0,0,1,0],
                    [0,0,0,1]])
    self.kf.H=np.array([[1,0,0,0],
                    [0,1,0,0]])
    self.kf.R=np.array([[self.detection_variance,0],
                    [0,self.detection_variance]])
    self.kf.Q=np.array([[self.process_variance,0,0,0],
                    [0,self.process_variance,0,0],
                    [0,0,self.process_variance,0],
                    [0,0,0,self.process_variance]])

def update(self, detections):
    # predict track positions using Kalman filter
    for track in self.tracks:
        track.predict(self.kf)

    # associate detections with tracks using Hungarian algorithm
    if len(detections) > 0:
        num_tracks = len(self.tracks)
        num_detections = len(detections)
        cost_matrix = np.zeros((num_tracks, num_detections))
        for i, track in enumerate(self.tracks):
            for j, detection in enumerate(detections):
                diff = track.prediction - detection
                distance = np.sqrt(diff[0,0]**2 + diff[0,1]**2)
                cost_matrix[i,j] = distance
        row_indices, col_indices = linear_sum_assignment(cost_matrix)
        unassigned_tracks = set(range(num_tracks)) - set(row_indices)
        unassigned_detections = set(range(num_detections)) - set(col_indices)
        for i, j in zip(row_indices, col_indices):
            self.tracks[i].update(detections[j], self.kf)
        for i in unassigned_tracks:
            self.tracks[i].mark_missed()
        for j in unassigned_detections:
            new_track = Track(detections[j], self.next_track_id, self.track_lifetime)
            self.tracks.append(new_track)
            self.next_track_id += 1

    # remove dead tracks
    self.tracks = [track for track in self.tracks if not track.is_dead()]

    # return list of track positions
    return [track.prediction.tolist()[0] for track in self.tracks]

위 코드는 간단한 SORT 추적 알고리즘을 구현합니다. Kalman 필터를 사용하여 목표 위치와 속도를 예측하고 추정한 다음 헝가리 알고리즘을 사용하여 수행합니다. 표적을 추적하고, 표적의 연속 보이지 않는 횟수를 기반으로 표적의 사망 여부를 최종적으로 판단하고 죽은 표적을 제거합니다. 위의 코드는 간단한 SORT 추적 알고리즘을 구현하는데, 칼만 필터를 사용하여 표적의 위치와 속도를 예측하고 추정한 다음 헝가리 알고리즘을 사용하여 표적을 연관시키고 최종적으로 표적의 사망 여부를 판단하고 그 숫자를 기반으로 사망을 제거합니다. 연속된 목표의 보이지 않는 시간.

SORT 알고리즘 외에도 칼만 필터, 입자 필터, 다중 표적 추적 등 다양한 표적 추적 알고리즘이 있습니다. 각 알고리즘에는 적용 가능한 시나리오, 장점 및 단점이 있습니다. 실제 적용에서는 특정 시나리오와 요구 사항을 기반으로 표적 추적에 적합한 알고리즘을 선택해야 합니다.

위 내용은 SORT 추적 알고리즘과 Python 구현 예에 대한 간략한 소개의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 网易伏羲에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
2 시간의 파이썬 계획 : 현실적인 접근2 시간의 파이썬 계획 : 현실적인 접근Apr 11, 2025 am 12:04 AM

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

파이썬 : 기본 응용 프로그램 탐색파이썬 : 기본 응용 프로그램 탐색Apr 10, 2025 am 09:41 AM

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 ​​같은 작업에 적합합니다.

2 시간 안에 얼마나 많은 파이썬을 배울 수 있습니까?2 시간 안에 얼마나 많은 파이썬을 배울 수 있습니까?Apr 09, 2025 pm 04:33 PM

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 프로젝트 및 문제 중심 방법에서 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법?10 시간 이내에 프로젝트 및 문제 중심 방법에서 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법?Apr 02, 2025 am 07:18 AM

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

중간 독서를 위해 Fiddler를 사용할 때 브라우저에서 감지되는 것을 피하는 방법은 무엇입니까?중간 독서를 위해 Fiddler를 사용할 때 브라우저에서 감지되는 것을 피하는 방법은 무엇입니까?Apr 02, 2025 am 07:15 AM

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python 3.6에 피클 파일을로드 할 때 '__builtin__'모듈을 찾을 수없는 경우 어떻게해야합니까?Python 3.6에 피클 파일을로드 할 때 '__builtin__'모듈을 찾을 수없는 경우 어떻게해야합니까?Apr 02, 2025 am 07:12 AM

Python 3.6에 피클 파일로드 3.6 환경 보고서 오류 : modulenotfounderror : nomodulename ...

경치 좋은 스팟 코멘트 분석에서 Jieba Word 세분화의 정확성을 향상시키는 방법은 무엇입니까?경치 좋은 스팟 코멘트 분석에서 Jieba Word 세분화의 정확성을 향상시키는 방법은 무엇입니까?Apr 02, 2025 am 07:09 AM

경치 좋은 스팟 댓글 분석에서 Jieba Word 세분화 문제를 해결하는 방법은 무엇입니까? 경치가 좋은 스팟 댓글 및 분석을 수행 할 때 종종 Jieba Word 세분화 도구를 사용하여 텍스트를 처리합니다 ...

정규 표현식을 사용하여 첫 번째 닫힌 태그와 정지와 일치하는 방법은 무엇입니까?정규 표현식을 사용하여 첫 번째 닫힌 태그와 정지와 일치하는 방법은 무엇입니까?Apr 02, 2025 am 07:06 AM

정규 표현식을 사용하여 첫 번째 닫힌 태그와 정지와 일치하는 방법은 무엇입니까? HTML 또는 기타 마크 업 언어를 다룰 때는 정규 표현식이 종종 필요합니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전

Dreamweaver Mac版

Dreamweaver Mac版

시각적 웹 개발 도구

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는