SORT(Simple Online and Realtime Tracking)는 Kalman 필터 기반의 표적 추적 알고리즘으로, 실시간 장면에서 움직이는 표적을 강력하게 추적할 수 있습니다. SORT 알고리즘은 원래 Alex Bewley 등이 2016년에 제안했습니다. 영상 감시, 자율 주행, 로봇 내비게이션 등과 같은 컴퓨터 비전 분야의 다양한 응용 분야에서 널리 사용되었습니다.
SORT 알고리즘은 주로 칼만 필터링과 헝가리어 알고리즘이라는 두 가지 핵심 아이디어를 기반으로 합니다. 칼만 필터는 시스템 상태를 추정하기 위한 알고리즘으로, 시스템의 동적 모델과 센서 측정을 사용하여 시스템 상태를 예측하고 업데이트함으로써 상태 추정의 정확도를 향상시킬 수 있습니다. 헝가리 알고리즘은 이분 그래프에서 최대 가중치 매칭 문제를 해결하는 데 사용되는 알고리즘입니다. 이 알고리즘은 주어진 이분 그래프에서 최대 가중치 매칭을 찾을 수 있습니다.
SORT 알고리즘의 주요 단계는 다음과 같습니다.
대상 탐지: 대상 탐지 알고리즘(예: YOLO, SSD 등)을 사용하여 현재 프레임에서 대상 정보를 추출합니다.
상태 예측: 추적된 각 대상에 대해 Kalman 필터를 사용하여 상태를 예측합니다.
데이터 연관: 현재 프레임의 예측 상태와 대상 정보를 기반으로 헝가리 알고리즘을 사용하여 데이터 연관을 수행하여 현재 프레임에서 추적된 각 대상에 해당하는 대상을 찾습니다.
상태 업데이트: 추적된 각 대상에 대해 Kalman 필터를 사용하여 상태를 업데이트합니다.
타겟 출력: 추적된 각 타겟의 상태 정보와 추적 결과를 출력합니다.
컴퓨터 비전에서 SORT 알고리즘은 다양한 표적 추적 시나리오에 적용될 수 있습니다. 예를 들어, 비디오 감시에서 SORT 알고리즘은 움직이는 대상을 실시간으로 추적할 수 있으므로 현장의 비정상적인 동작을 감지하고 조기 경고할 수 있습니다. 자율 주행 분야에서 SORT 알고리즘은 다른 차량, 보행자 및 기타 교통 참가자를 추적하여 차량의 자율 주행 및 장애물 회피를 달성할 수 있습니다. 로봇 탐색에서 SORT 알고리즘은 움직이는 목표를 추적하여 로봇의 자율 탐색 및 장애물 회피를 달성할 수 있습니다.
다음은 Python으로 구현한 간단한 예제 코드입니다.
#python import numpy as np from filterpy.kalman import KalmanFilter from scipy.optimize import linear_sum_assignment class Track: def init(self,prediction,track_id,track_lifetime): self.prediction=np.atleast_2d(prediction) self.track_id=track_id self.track_lifetime=track_lifetime self.age=0 self.total_visible_count=1 self.consecutive_invisible_count=0 def predict(self, kf): self.prediction = kf.predict() self.age += 1 def update(self, detection, kf): self.prediction = kf.update(detection) self.total_visible_count += 1 self.consecutive_invisible_count = 0 def mark_missed(self): self.consecutive_invisible_count += 1 def is_dead(self): return self.consecutive_invisible_count >= self.track_lifetime class Tracker: def init(self,track_lifetime,detection_variance,process_variance): self.next_track_id=0 self.tracks=[] self.track_lifetime=track_lifetime self.detection_variance=detection_variance self.process_variance=process_variance self.kf=KalmanFilter(dim_x=4,dim_z=2) self.kf.F=np.array([[1,0,1,0], [0,1,0,1], [0,0,1,0], [0,0,0,1]]) self.kf.H=np.array([[1,0,0,0], [0,1,0,0]]) self.kf.R=np.array([[self.detection_variance,0], [0,self.detection_variance]]) self.kf.Q=np.array([[self.process_variance,0,0,0], [0,self.process_variance,0,0], [0,0,self.process_variance,0], [0,0,0,self.process_variance]]) def update(self, detections): # predict track positions using Kalman filter for track in self.tracks: track.predict(self.kf) # associate detections with tracks using Hungarian algorithm if len(detections) > 0: num_tracks = len(self.tracks) num_detections = len(detections) cost_matrix = np.zeros((num_tracks, num_detections)) for i, track in enumerate(self.tracks): for j, detection in enumerate(detections): diff = track.prediction - detection distance = np.sqrt(diff[0,0]**2 + diff[0,1]**2) cost_matrix[i,j] = distance row_indices, col_indices = linear_sum_assignment(cost_matrix) unassigned_tracks = set(range(num_tracks)) - set(row_indices) unassigned_detections = set(range(num_detections)) - set(col_indices) for i, j in zip(row_indices, col_indices): self.tracks[i].update(detections[j], self.kf) for i in unassigned_tracks: self.tracks[i].mark_missed() for j in unassigned_detections: new_track = Track(detections[j], self.next_track_id, self.track_lifetime) self.tracks.append(new_track) self.next_track_id += 1 # remove dead tracks self.tracks = [track for track in self.tracks if not track.is_dead()] # return list of track positions return [track.prediction.tolist()[0] for track in self.tracks]
위 코드는 간단한 SORT 추적 알고리즘을 구현합니다. Kalman 필터를 사용하여 목표 위치와 속도를 예측하고 추정한 다음 헝가리 알고리즘을 사용하여 수행합니다. 표적을 추적하고, 표적의 연속 보이지 않는 횟수를 기반으로 표적의 사망 여부를 최종적으로 판단하고 죽은 표적을 제거합니다. 위의 코드는 간단한 SORT 추적 알고리즘을 구현하는데, 칼만 필터를 사용하여 표적의 위치와 속도를 예측하고 추정한 다음 헝가리 알고리즘을 사용하여 표적을 연관시키고 최종적으로 표적의 사망 여부를 판단하고 그 숫자를 기반으로 사망을 제거합니다. 연속된 목표의 보이지 않는 시간.
SORT 알고리즘 외에도 칼만 필터, 입자 필터, 다중 표적 추적 등 다양한 표적 추적 알고리즘이 있습니다. 각 알고리즘에는 적용 가능한 시나리오, 장점 및 단점이 있습니다. 실제 적용에서는 특정 시나리오와 요구 사항을 기반으로 표적 추적에 적합한 알고리즘을 선택해야 합니다.
위 내용은 SORT 추적 알고리즘과 Python 구현 예에 대한 간략한 소개의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python List 슬라이싱의 기본 구문은 목록 [start : stop : step]입니다. 1. Start는 첫 번째 요소 인덱스, 2.Stop은 첫 번째 요소 인덱스가 제외되고 3. Step은 요소 사이의 단계 크기를 결정합니다. 슬라이스는 데이터를 추출하는 데 사용될뿐만 아니라 목록을 수정하고 반전시키는 데 사용됩니다.

ListSoutPerformArraysin : 1) DynamicsizingandFrequentInsertions/Deletions, 2) StoringHeterogeneousData 및 3) MemoryEfficiencyForsParsEdata, butMayHavesLightPerformanceCosceperationOperations.

TOCONVERTAPYTHONARRAYTOALIST, USETHELIST () CONSTUCTORORAGENERATERATOREXPRESSION.1) importTheArrayModuleAndCreateAnarray.2) USELIST (ARR) 또는 [XFORXINARR] TOCONVERTITTOALIST.

chooSearRaysOverListSinpyTonforBetTerferformanceAndMemoryEfficiencyInspecificscenarios.1) arrgenumericalDatasets : arraysreducememoryUsage.2) Performance-CriticalOperations : ArraysofferspeedboostsfortaskslikeApenorsearching.3) TypeSenforc

파이썬에서는 루프에 사용하여 열거 및 추적 목록에 대한 이해를 나열 할 수 있습니다. Java에서는 루프를 위해 전통적인 사용 및 루프가 트래버스 어레이를 향해 향상시킬 수 있습니다. 1. Python 목록 트래버스 방법에는 다음이 포함됩니다. 루프, 열거 및 목록 이해력. 2. Java 어레이 트래버스 방법에는 다음이 포함됩니다. 루프 용 전통 및 루프를위한 향상.

이 기사는 버전 3.10에 도입 된 Python의 새로운 "매치"진술에 대해 논의하며, 이는 다른 언어로 된 문장과 동등한 역할을합니다. 코드 가독성을 향상시키고 기존 IF-ELIF-EL보다 성능 이점을 제공합니다.

Python 3.11의 예외 그룹은 여러 예외를 동시에 처리하여 동시 시나리오 및 복잡한 작업에서 오류 관리를 향상시킵니다.

Python의 기능 주석은 유형 확인, 문서 및 IDE 지원에 대한 기능에 메타 데이터를 추가합니다. 코드 가독성, 유지 보수를 향상 시키며 API 개발, 데이터 과학 및 라이브러리 생성에 중요합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.
