GAN(Generative Adversarial Network)은 기계 학습에서 텍스트를 이미지로 생성하는 데 널리 사용됩니다. 이 네트워크 구조는 랜덤 노이즈를 이미지로 변환하는 생성기와 실제 이미지와 생성기에 의해 생성된 이미지를 구별하는 판별기로 구성됩니다. 생성자는 지속적인 적대적 훈련을 통해 판별자와 구별하기 어려운 사실적인 이미지를 점차적으로 생성할 수 있습니다. 이 기술은 이미지 생성, 이미지 향상 및 기타 분야에서 광범위한 응용 가능성을 가지고 있습니다.
간단한 예는 GAN을 사용하여 손으로 쓴 숫자 이미지를 생성하는 것입니다. 다음은 PyTorch의 샘플 코드입니다.
import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torchvision.utils import save_image from torch.autograd import Variable # 定义生成器网络 class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.fc = nn.Linear(100, 256) self.main = nn.Sequential( nn.ConvTranspose2d(256, 128, 5, stride=2, padding=2), nn.BatchNorm2d(128), nn.ReLU(True), nn.ConvTranspose2d(128, 64, 5, stride=2, padding=2), nn.BatchNorm2d(64), nn.ReLU(True), nn.ConvTranspose2d(64, 1, 4, stride=2, padding=1), nn.Tanh() ) def forward(self, x): x = self.fc(x) x = x.view(-1, 256, 1, 1) x = self.main(x) return x # 定义判别器网络 class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.main = nn.Sequential( nn.Conv2d(1, 64, 4, stride=2, padding=1), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 128, 4, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(128, 256, 4, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(256, 1, 4, stride=1, padding=0), nn.Sigmoid() ) def forward(self, x): x = self.main(x) return x.view(-1, 1) # 定义训练函数 def train(generator, discriminator, dataloader, optimizer_G, optimizer_D, device): criterion = nn.BCELoss() real_label = 1 fake_label = 0 for epoch in range(200): for i, (data, _) in enumerate(dataloader): # 训练判别器 discriminator.zero_grad() real_data = data.to(device) batch_size = real_data.size(0) label = torch.full((batch_size,), real_label, device=device) output = discriminator(real_data).view(-1) errD_real = criterion(output, label) errD_real.backward() D_x = output.mean().item() noise = torch.randn(batch_size, 100, device=device) fake_data = generator(noise) label.fill_(fake_label) output = discriminator(fake_data.detach()).view(-1) errD_fake = criterion(output, label) errD_fake.backward() D_G_z1 = output.mean().item() errD = errD_real + errD_fake optimizer_D.step() # 训练生成器 generator.zero_grad() label.fill_(real_label) output = discriminator(fake_data).view(-1) errG = criterion(output, label) errG.backward() D_G_z2 = output.mean().item() optimizer_G.step() if i % 100 == 0: print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)): %.4f / %.4f' % (epoch+1, 200, i, len(dataloader), errD.item(), errG.item(), D_x, D_G_z1, D_G_z2)) # 保存生成的图像 fake = generator(fixed_noise) save_image(fake.detach(), 'generated_images_%03d.png' % epoch, normalize=True) # 加载MNIST数据集 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]) dataset = datasets.MNIST(root='./数据集', train=True, transform=transform, download=True) dataloader = torch.utils.data.DataLoader(dataset, batch_size=64, shuffle=True) # 定义设备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 初始化生成器和判别器 generator = Generator().to(device) discriminator = Discriminator().to(device) # 定义优化器 optimizer_G = optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999)) optimizer_D = optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999)) # 定义固定噪声用于保存生成的图像 fixed_noise = torch.randn(64, 100, device=device) # 开始训练 train(generator, discriminator, dataloader, optimizer_G, optimizer_D, device)
이 코드를 실행하면 GAN 모델이 손으로 쓴 숫자 이미지를 생성하고 생성된 이미지를 저장하도록 훈련합니다.
위 내용은 샘플 코드를 사용하여 텍스트를 이미지로 변환하는 기계 학습을 구현하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

과학자들은 C. el 그러나 중요한 질문이 발생합니다. 새로운 AI S와 함께 효과적으로 작동하도록 우리 자신의 신경망을 어떻게 조정합니까?

Google의 Gemini Advanced : 수평선의 새로운 가입 계층 현재 Gemini Advanced에 액세스하려면 $ 19.99/월 Google One AI Premium Plan이 필요합니다. 그러나 Android Authority 보고서는 다가오는 변경 사항을 암시합니다. 최신 Google p. 내 코드

고급 AI 기능을 둘러싼 과대 광고에도 불구하고 Enterprise AI 배포 내에서 상당한 도전 과제 : 데이터 처리 병목 현상. CEO는 AI 발전을 축하하는 동안 엔지니어는 느린 쿼리 시간, 과부하 파이프 라인,

문서 처리는 더 이상 AI 프로젝트에서 파일을 여는 것이 아니라 혼돈을 명확하게 전환하는 것입니다. PDF, PowerPoint 및 Word와 같은 문서는 모든 모양과 크기로 워크 플로우를 범람합니다. 구조화 된 검색

Google의 에이전트 개발 키트 (ADK)의 전력을 활용하여 실제 기능을 갖춘 지능형 에이전트를 만듭니다! 이 튜토리얼은 Gemini 및 GPT와 같은 다양한 언어 모델을 지원하는 ADK를 사용하여 대화 에이전트를 구축하는 것을 안내합니다. w

요약: SLM (Small Language Model)은 효율성을 위해 설계되었습니다. 자원 결핍, 실시간 및 개인 정보 보호 환경에서 LLM (Large Language Model)보다 낫습니다. 초점 기반 작업, 특히 도메인 특이성, 제어 성 및 해석 성이 일반적인 지식이나 창의성보다 더 중요합니다. SLM은 LLM을 대체하지는 않지만 정밀, 속도 및 비용 효율성이 중요 할 때 이상적입니다. 기술은 더 적은 자원으로 더 많은 것을 달성하는 데 도움이됩니다. 그것은 항상 운전자가 아니라 프로모터였습니다. 증기 엔진 시대부터 인터넷 버블 시대에 이르기까지 기술의 힘은 문제를 해결하는 데 도움이되는 정도입니다. 인공 지능 (AI) 및보다 최근에 생성 AI가 예외는 아닙니다.

컴퓨터 비전을위한 Google Gemini의 힘을 활용 : 포괄적 인 가이드 주요 AI 챗봇 인 Google Gemini는 강력한 컴퓨터 비전 기능을 포괄하기 위해 대화를 넘어서 기능을 확장합니다. 이 안내서는 사용 방법에 대해 자세히 설명합니다

2025 년의 AI 환경은 Google의 Gemini 2.0 Flash와 Openai의 O4-Mini가 도착하면서 전기가 전환됩니다. 이 최첨단 모델은 몇 주 간격으로 발사되어 비슷한 고급 기능과 인상적인 벤치 마크 점수를 자랑합니다. 이 심층적 인 비교


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

Dreamweaver Mac版
시각적 웹 개발 도구

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

WebStorm Mac 버전
유용한 JavaScript 개발 도구
