단순 선형 회귀는 두 연속 변수 간의 관계를 연구하는 데 사용되는 통계 방법입니다. 그 중 하나의 변수를 독립변수(x)라고 하고, 다른 변수를 종속변수(y)라고 합니다. 두 변수 사이에 선형관계가 있다고 가정하고, 독립변수의 특성을 바탕으로 종속변수의 반응값(y)을 정확하게 예측하는 선형함수를 찾아보고자 한다. 직선을 맞추면 예측 결과를 얻을 수 있습니다. 이 예측 모델을 사용하면 독립 변수가 변경됨에 따라 종속 변수가 어떻게 변경되는지 이해하고 예측할 수 있습니다.
이 개념을 이해하기 위해 각 독립변수(경력 연수)에 해당하는 종속변수(급여)의 값이 포함된 급여 데이터 세트를 사용할 수 있습니다.
급여 데이터세트
연봉 및 경력
1.1 39343.00
1.3 46205.00
1.5 37731.00
2.0 43525.00
2.2 398 91.0 0
2.9 56642.00
3.0 60150.00
3.2 54445.00
3.2 64445.00
3.7 57189.00
일반적인 목적으로 다음을 정의합니다.
x를 특징 벡터로, 즉 x=[x_1,x_2,...,x_n],
y를 응답 벡터로, 즉 y=[y_1,y_2, .. ..,y_n]
n개의 관측치에 대해(위 예에서는 n=10).
주어진 데이터 세트의 산점도

이제 우리는 임의의 y 값 또는 임의의 x 값에 대한 반응을 예측할 수 있는 위의 산점도에 맞는 선을 찾아야 합니다.
가장 적합한 선을 회귀선이라고 합니다.
다음 R 코드는 단순 선형 회귀를 구현하는 데 사용됩니다.
dataset=read.csv('salary.csv') install.packages('caTools') library(caTools) split=sample.split(dataset$Salary,SplitRatio=0.7) trainingset=subset(dataset,split==TRUE) testset=subset(dataset,split==FALSE) lm.r=lm(formula=Salary~YearsExperience, data=trainingset) coef(lm.r) ypred=predict(lm.r,newdata=testset) install.packages("ggplot2") library(ggplot2) ggplot()+geom_point(aes(x=trainingset$YearsExperience, y=trainingset$Salary),colour='red')+ geom_line(aes(x=trainingset$YearsExperience, y=predict(lm.r,newdata=trainingset)),colour='blue')+ ggtitle('Salary vs Experience(Training set)')+ xlab('Years of experience')+ ylab('Salary') ggplot()+ geom_point(aes(x=testset$YearsExperience,y=testset$Salary), colour='red')+ geom_line(aes(x=trainingset$YearsExperience, y=predict(lm.r,newdata=trainingset)), colour='blue')+ ggtitle('Salary vs Experience(Test set)')+ xlab('Years of experience')+ ylab('Salary')
훈련 세트 결과 시각화

위 내용은 R에서 간단한 선형 회귀 방법을 구현하고 그 개념을 설명합니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

내 칼럼을 처음 접할 수있는 분들을 위해, 나는 구체화 된 AI, AI 추론, AI의 첨단 획기적인 혁신, AI 교육, AI의 수비, ai re

유럽의 야심 찬 AI 대륙 행동 계획은 EU를 인공 지능의 글로벌 리더로 설립하는 것을 목표로합니다. 핵심 요소는 AI Gigafactories 네트워크를 만드는 것입니다. 각각 약 100,000 개의 고급 AI 칩을 보유하고 있습니다 - Capaci의 4 배

AI 에이전트 애플리케이션에 대한 Microsoft의 통합 접근 방식 : 비즈니스를위한 명확한 승리 새로운 AI 에이전트 기능에 관한 Microsoft의 최근 발표는 명확하고 통합 된 프레젠테이션에 깊은 인상을 받았습니다. 많은 기술 발표와는 달리 TE에서 멍청한 것입니다

Shopify CEO Tobi Lütke의 최근 메모는 AI 숙련도가 모든 직원에 대한 근본적인 기대를 대담하게 선언하여 회사 내에서 중요한 문화적 변화를 표시합니다. 이것은 도망가는 트렌드가 아닙니다. 그것은 p에 통합 된 새로운 운영 패러다임입니다

IBM의 Z17 메인 프레임 : 향상된 비즈니스 운영을 위해 AI를 통합합니다 지난 달, IBM의 뉴욕 본사에서 Z17의 기능을 미리 보았습니다. Z16의 성공을 기반으로 (2022 년에 시작되어 지속적인 수익을 보여주는 시연

흔들리지 않는 자신감을 해제하고 외부 검증의 필요성을 제거하십시오! 이 다섯 개의 chatgpt 프롬프트는 완전한 자립과 자기 인식의 변형적인 변화로 당신을 안내 할 것입니다. 간단히 괄호를 복사, 붙여 넣기 및 사용자 정의하십시오

인공 지능 보안 및 연구 회사 인 Anthropic의 최근 [연구]는 이러한 복잡한 과정에 대한 진실을 밝히기 시작하여 우리 자신의인지 영역과 방해가되는 복잡성을 보여줍니다. 자연 지능과 인공 지능은 우리가 생각하는 것보다 더 유사 할 수 있습니다. 내부 스누핑 : 의인성 해석 가능성 연구 Anthropic이 수행 한 연구에서 얻은 새로운 연구 결과는 AI의 내부 컴퓨팅을 역 엔지니어링하는 것을 목표로하는 기계적 해석 성 분야에서 상당한 발전을 나타냅니다. AI가하는 일을 관찰 할뿐만 아니라 인공 뉴런 수준에서 어떻게 수행하는지 이해합니다. 누군가가 특정한 대상을 보거나 특정한 아이디어에 대해 생각할 때 어떤 뉴런이 발사하는지 그림으로 뇌를 이해하려고한다고 상상해보십시오. 에이

Qualcomm 's Dragonwing : 기업 및 인프라로의 전략적 도약 Qualcomm은 새로운 Dragonwing 브랜드를 통해 전 세계적으로 엔터프라이즈 및 인프라 시장을 대상으로 모바일을 넘어 범위를 적극적으로 확장하고 있습니다. 이것은 단지 Rebran이 아닙니다


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.
