찾다
기술 주변기기일체 포함기계 학습의 샘플 풀 계산 검토

기계 학습의 샘플 풀 계산 검토

Reservoir Computing(RC)은 재귀 신경망을 사용하는 컴퓨팅 프레임워크입니다. 기존 신경망과 달리 일부 매개변수만 업데이트하고 다른 매개변수는 무작위로 선택하고 수정합니다.

예비 풀은 역학을 통해 입력 신호를 더 높은 차원의 계산 공간에 매핑하는 고정 비선형 시스템입니다. 저장소는 블랙박스로 간주될 수 있습니다. 입력 신호가 저장소로 다시 공급된 후 저장소의 상태를 읽고 이를 필요한 출력에 매핑하도록 간단한 판독 메커니즘이 훈련됩니다.

저수지 역학이 고정되어 있으므로 훈련은 판독 단계에서만 수행됩니다.

전통적인 예비 풀 계산은 두 가지 조건을 충족해야 합니다. 즉, 독립적인 비선형 단위로 구성되고 정보를 저장할 수 있습니다.

예비 풀 계산은 기본적으로 기계 학습 알고리즘을 더 빠르게 실행하는 데 사용되는 방법입니다.

용어의 "저수지"는 전력 시스템을 나타냅니다. 동적 시스템은 시간이 지남에 따라 공간의 점이 어떻게 변하는지 설명하는 수학적 함수로 표현됩니다. 이를 알면 공간 내 지점의 위치를 ​​예측할 수 있습니다.

예비 풀은 무작위로 연결된 여러 개의 순환 연결된 단위로 구성됩니다. 예비 풀 계산은 네트워크의 모든 매개변수를 업데이트하는 대신 몇 가지 매개변수만 업데이트하고 무작위 선택 후에는 다른 매개변수를 변경하지 않고 유지합니다.

예비 풀 계산의 프레임워크는 재귀 신경망의 프레임워크와 유사합니다. 에코 상태 네트워크, 액체 상태 기계 및 기타 재귀 신경망 모델은 예비 풀 계산의 기본 프레임워크를 형성합니다. 처리할 계산 시간적 또는 순차적 데이터가 있는 작업에 매우 효과적입니다.

예비 풀 계산의 목적

비선형 입력을 순차적으로 고차원 공간으로 변환하여 간단한 학습 알고리즘을 통해 입력의 특성을 효율적으로 읽어낼 수 있도록 하는 것입니다. . 순환 신경망을 사용하는 것 외에도 다른 동적 시스템을 예비 풀로 사용할 수도 있습니다. 예비 풀 컴퓨팅의 목표는 더 낮은 학습 비용으로 정보와 데이터를 더 빠르게 처리할 수 있는 시스템을 구축하는 것입니다. 이는 대규모 데이터 세트를 훈련할 때 전력 소비가 높기 때문에 머신러닝의 경우 특히 중요합니다. 1 . 상황별 반향 네트워크

상황별 반향 네트워크에서 입력 레이어는 신호를 고차원 동적 시스템에 입력하고 이 고차원 동적 시스템의 정보는 훈련 가능한 단일 레이어 퍼셉트론에 의해 판독됩니다. 여기에는 두 가지 유형의 동적 시스템이 있습니다. 하나는 무작위 가중치가 고정된 순환 신경망이고, 다른 하나는 Turing 형태 형성 모델에서 영감을 받은 연속 반응-확산 시스템입니다.

    2. 에코 상태 네트워크
  • 에코 상태 네트워크에는 희박하게 연결된 숨겨진 레이어가 있습니다. 히든 레이어의 연결성은 일반적으로 10% 미만입니다. 입력 신호로 더 큰 무작위 가중치 고정 순환 신경망을 구동하여 저장소의 각 뉴런에 비선형 응답 신호를 유도한 다음 모든 응답 신호의 훈련 가능한 선형 조합을 사용하여 원하는 신호에 연결합니다.
  • 3. 액체 상태 기계

액체 상태 기계(LSM)는 펄스 신경망을 사용합니다. LSM은 다수의 노드 또는 뉴런으로 구성됩니다. 각 뉴런은 다른 뉴런과 외부 소스로부터 시간에 따라 변하는 입력을 받습니다. 연결의 반복적 특성으로 인해 시변 입력은 네트워크 노드에서 시공간 활성화 패턴이 됩니다. 이러한 시공간적 활성화 패턴은 선형 판별 단위로 판독됩니다.

4. 비선형 과도 계산

시간에 따라 변하는 입력 신호가 메커니즘의 내부 역학을 벗어나면 이러한 편차로 인해 장치의 출력에 반영되는 일시적인 변화가 발생합니다.

5. 딥 리저브 풀 계산

딥 리저브 풀 계산 모델이 등장하면서 리저브 풀 계산 프레임워크는 계층적 방식으로 시간 데이터를 처리하는 딥 러닝으로 확장되기 시작했습니다. 계층적 조합 RNN의 역할.

위 내용은 기계 학습의 샘플 풀 계산 검토의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 网易伏羲에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
AI Index 2025 읽기 : AI는 친구, 적 또는 부조종사입니까?AI Index 2025 읽기 : AI는 친구, 적 또는 부조종사입니까?Apr 11, 2025 pm 12:13 PM

Stanford University Institute for Human-Oriented Intificial Intelligence가 발표 한 2025 인공 지능 지수 보고서는 진행중인 인공 지능 혁명에 대한 훌륭한 개요를 제공합니다. 인식 (무슨 일이 일어나고 있는지 이해), 감사 (혜택보기), 수용 (얼굴 도전) 및 책임 (우리의 책임 찾기)의 네 가지 간단한 개념으로 해석합시다. 인지 : 인공 지능은 어디에나 있고 빠르게 발전하고 있습니다 인공 지능이 얼마나 빠르게 발전하고 확산되고 있는지 잘 알고 있어야합니다. 인공 지능 시스템은 끊임없이 개선되어 수학 및 복잡한 사고 테스트에서 우수한 결과를 얻고 있으며 1 년 전만해도 이러한 테스트에서 비참하게 실패했습니다. AI 복잡한 코딩 문제 또는 대학원 수준의 과학적 문제를 해결한다고 상상해보십시오-2023 년 이후

Meta Llama 3.2- 분석 Vidhya를 시작합니다Meta Llama 3.2- 분석 Vidhya를 시작합니다Apr 11, 2025 pm 12:04 PM

메타의 라마 3.2 : 멀티 모달 및 모바일 AI의 도약 Meta는 최근 AI에서 강력한 비전 기능과 모바일 장치에 최적화 된 가벼운 텍스트 모델을 특징으로하는 AI의 상당한 발전 인 Llama 3.2를 공개했습니다. 성공을 바탕으로 o

AV 바이트 : Meta ' S Llama 3.2, Google의 Gemini 1.5 등AV 바이트 : Meta ' S Llama 3.2, Google의 Gemini 1.5 등Apr 11, 2025 pm 12:01 PM

이번 주 AI 환경 : 발전의 회오리 바람, 윤리적 고려 사항 및 규제 토론. OpenAi, Google, Meta 및 Microsoft와 같은 주요 플레이어

기계와 대화하는 사람의 비용 : 챗봇이 실제로 신경 쓰일 수 있습니까?기계와 대화하는 사람의 비용 : 챗봇이 실제로 신경 쓰일 수 있습니까?Apr 11, 2025 pm 12:00 PM

연결의 편안한 환상 : 우리는 AI와의 관계에서 진정으로 번성하고 있습니까? 이 질문은 MIT Media Lab의 "AI (AI)를 사용하여 인간의 발전"심포지엄의 낙관적 톤에 도전했습니다. 이벤트는 절단 -EDG를 보여주었습니다

파이썬의 Scipy 라이브러리 이해파이썬의 Scipy 라이브러리 이해Apr 11, 2025 am 11:57 AM

소개 차등 방정식, 최적화 문제 또는 푸리에 분석과 같은 복잡한 문제를 해결하는 과학자 또는 엔지니어라고 상상해보십시오. Python의 사용 편의성 및 그래픽 기능은 매력적이지만 이러한 작업에는 강력한 도구가 필요합니다.

LLAMA 3.2를 실행하는 3 가지 방법 분석 VidhyaLLAMA 3.2를 실행하는 3 가지 방법 분석 VidhyaApr 11, 2025 am 11:56 AM

메타의 라마 3.2 : 멀티 모달 AI 강국 Meta의 최신 멀티 모드 모델 인 LLAMA 3.2는 AI의 상당한 발전으로 향상된 언어 이해력, 개선 된 정확도 및 우수한 텍스트 생성 기능을 자랑합니다. 그것의 능력 t

Dagster와 데이터 품질 검사 자동화Dagster와 데이터 품질 검사 자동화Apr 11, 2025 am 11:44 AM

데이터 품질 보증 : Dagster로 점검 자동화 및 큰 기대치 데이터 품질이 높다는 것은 데이터 중심 비즈니스에 중요합니다. 데이터 볼륨 및 소스가 증가함에 따라 수동 품질 관리는 비효율적이며 오류가 발생하기 쉽습니다.

메인 프레임은 AI 시대에 역할을합니까?메인 프레임은 AI 시대에 역할을합니까?Apr 11, 2025 am 11:42 AM

메인 프레임 : AI 혁명의 이름없는 영웅 서버는 일반 목적 애플리케이션 및 여러 클라이언트를 처리하는 데 탁월하지만 메인 프레임은 대량의 미션 크리티컬 작업을 위해 구축됩니다. 이 강력한 시스템은 자주 무거움에서 발견됩니다

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경