기계 학습(ML)은 명시적으로 프로그래밍하지 않고도 컴퓨터가 예측과 결정을 내리는 방법을 학습할 수 있게 해주는 강력한 기술입니다. 모든 ML 프로젝트에서는 특정 작업에 적합한 ML 모델을 선택하는 것이 중요합니다.
이 문서에서는 다음 단계를 통해 ML 모델을 올바르게 선택하는 방법을 설명합니다.
문제 및 예상 결과 정의
머신러닝 모델을 선택하기 전에 문제를 정확하게 정의하고 예상 결과는 적합한 모델과 더 잘 일치할 수 있습니다.
문제를 정의하려면 다음 세 가지 사항을 고려하세요.
- 무엇을 예측하거나 분류하고 싶나요?
- 입력 데이터는 무엇인가요?
- 출력 데이터는 무엇인가요?
문제와 원하는 결과를 정의하는 것은 올바른 ML 모델을 선택하는 과정에서 중요한 단계입니다.
성능 지표 선택
문제와 원하는 결과를 정의한 후 다음 단계는 성능 지표를 선택하는 것입니다. 성능 지표는 ML 모델이 예상 결과를 달성하는 능력을 측정합니다.
원하는 결과와 일치하는 성능 지표를 선택하는 것이 중요합니다. 적절한 지표는 해결하려는 특정 문제와 원하는 결과에 따라 달라집니다. 몇 가지 일반적인 성능 지표는 다음과 같습니다.
- 정확도: 모델이 수행한 올바른 예측의 비율입니다.
- 정확도: 모델이 수행한 참양성 예측의 비율입니다.
- Recall: 모델이 정확하게 예측한 실제 긍정의 비율입니다.
- F1 점수: 정밀도와 재현율의 조화 평균입니다.
- AUC-ROC: 수신기 작동 특성 곡선 아래 영역은 긍정적인 사례와 부정적인 사례를 구별하는 모델의 능력을 측정한 것입니다.
원하는 결과와 일치하는 성능 지표를 선택하여 다양한 ML 모델의 성능을 효과적으로 평가하고 비교하세요.
다양한 모델 유형 탐색
이 단계에서는 다양한 모델 유형을 탐색합니다. 각 유형의 모델에는 고유한 장점과 단점이 있습니다.
다음은 일반적인 ML 모델 유형의 몇 가지 예입니다.
선형 모델: 선형 모델은 입력 특성의 선형 조합을 기반으로 예측합니다. 훈련이 간단하고 빠르지만 더 복잡한 작업에는 적합하지 않습니다. 선형 모델의 예로는 선형 회귀 및 로지스틱 회귀가 있습니다.
결정 트리: 결정 트리는 트리와 같은 구조를 사용하여 내린 일련의 결정을 기반으로 예측합니다. 이는 이해하고 해석하기 쉽지만 일부 작업에 대해서는 다른 모델만큼 정확하지 않을 수 있습니다.
신경망: 신경망은 인간 두뇌의 구조와 기능에서 영감을 받은 모델입니다. 데이터의 복잡한 패턴을 학습할 수 있지만 훈련하고 해석하기는 어렵습니다. 신경망의 예로는 CNN(컨벌루션 신경망)과 RNN(반복 신경망)이 있습니다.
앙상블 모델: 앙상블 모델은 여러 개별 모델의 예측을 결합한 모델입니다. 이는 단일 모델의 성능을 향상시키는 경우가 많지만 다른 유형의 모델보다 훨씬 더 계산 집약적입니다. 앙상블 모델의 예로는 랜덤 포레스트 및 그래디언트 부스팅이 있습니다.
사용할 모델 유형을 결정할 때 작업의 복잡성, 사용 가능한 데이터의 양과 품질, 필요한 예측 정확도를 고려하세요.
데이터의 크기와 품질을 고려하세요
학습에 사용할 수 있는 데이터의 크기와 품질은 ML 모델의 성능에 큰 영향을 미칠 수 있습니다.
양질의 데이터가 많은 경우 더 복잡한 모델을 사용하여 데이터의 복잡한 패턴을 학습하여 예측 정확도를 높일 수 있습니다. 데이터가 제한되어 있으면 더 간단한 모델을 사용하거나 좋은 성능을 얻기 위해 데이터 품질을 향상시키는 방법을 찾아야 합니다.
데이터 품질을 향상시키는 방법에는 여러 가지가 있습니다.
데이터 정리: 데이터의 오류, 불일치 또는 누락된 값을 제거하면 데이터 품질을 향상시킬 수 있습니다.
특성 엔지니어링: 기존 데이터에서 새로운 특성을 생성하거나 기존 특성을 의미 있는 방식으로 결합하면 모델이 데이터에서 더 복잡한 패턴을 학습하는 데 도움이 됩니다.
데이터 증대: 기존 데이터를 기반으로 추가 데이터 포인트를 생성하면 데이터 세트의 크기를 늘리고 모델 성능을 향상시킬 수 있습니다.
따라서 모델의 복잡성과 데이터의 크기 및 품질의 균형을 맞추는 것이 중요합니다.
사용된 모델이 사용 가능한 데이터에 비해 너무 복잡하면 과적합될 수 있습니다. 즉, 훈련 데이터에서는 잘 수행되지만 훈련되지 않은 데이터에서는 잘 수행되지 않습니다. 그리고 너무 단순한 모델을 사용하면 적합하지 않을 수 있습니다. 즉, 정확한 예측을 할 만큼 데이터의 패턴을 충분히 학습할 수 없다는 의미입니다.
모델 평가 및 비교
이 단계에는 선택한 성능 지표를 사용하여 여러 가지 ML 모델을 교육하고 테스트하는 작업이 포함됩니다.
ML 모델을 훈련하고 테스트하려면 데이터를 훈련 세트와 테스트 세트로 분할해야 합니다. 훈련 세트는 모델을 훈련하는 데 사용되고, 테스트 세트는 보이지 않는 데이터에 대한 모델의 성능을 평가하는 데 사용됩니다. 다양한 모델의 성능을 비교하려면 테스트 세트의 각 모델에 대한 성능 지표를 계산한 다음 결과를 비교하여 어떤 모델이 가장 잘 수행되는지 결정할 수 있습니다.
ML 모델의 성능은 모델 선택, 모델의 하이퍼파라미터, 데이터의 크기와 품질 등 다양한 요소의 영향을 받는다는 점에 유의하는 것이 중요합니다. 따라서 몇 가지 다른 모델과 하이퍼파라미터 설정을 시도하면 가장 성능이 좋은 모델을 찾는 데 도움이 될 수 있습니다.
선택한 모델 미세 조정
최고 성능의 모델을 선택한 후 모델의 하이퍼파라미터를 미세 조정하여 성능을 더욱 향상시킬 수 있습니다. 모델의 하이퍼파라미터를 미세 조정하려면 모델의 학습률, 신경망의 레이어 수 또는 기타 모델별 매개변수를 조정해야 할 수 있습니다. 하이퍼파라미터를 미세 조정하는 프로세스를 흔히 하이퍼파라미터 최적화 또는 하이퍼파라미터 튜닝이라고 합니다.
초매개변수 조정에는 수동 조정, 그리드 검색, 무작위 검색 등 여러 가지 방법이 있습니다.
수동 조정: 하이퍼파라미터를 수동으로 조정하고 검증 세트에서 모델 성능을 평가합니다. 이는 시간이 많이 걸리는 프로세스이지만 하이퍼파라미터를 완전히 제어하고 각 하이퍼파라미터가 모델 성능에 미치는 영향을 이해할 수 있는 프로세스입니다.
그리드 검색: 여기에는 각 하이퍼파라미터 조합에 대한 모델 성능을 검색하고 평가하기 위해 하이퍼파라미터 그리드를 지정하는 작업이 포함됩니다.
Random Search: 하이퍼파라미터의 무작위 조합을 샘플링하고 각 조합에 대한 모델 성능을 평가합니다. 그리드 검색보다 계산 비용이 덜 들지만 최적의 하이퍼파라미터 조합을 찾지 못할 수도 있습니다.
선택한 모델의 하이퍼파라미터를 미세 조정하면 성능을 더욱 향상하고 원하는 수준의 예측 정확도를 달성할 수 있습니다.
모델 모니터링 및 유지 관리
ML 모델 배포를 완료한 후에는 모델 성능을 모니터링하고 업데이트하여 시간이 지나도 모델의 정확성이 유지되는지 확인해야 합니다. 이를 모델 유지 관리라고도 합니다.
모델 유지 관리와 관련하여 몇 가지 주요 고려 사항이 있습니다.
데이터 드리프트: 데이터 드리프트는 시간이 지남에 따라 데이터 분포가 변경될 때 발생합니다. 모델이 새로운 데이터 분포에 대해 훈련되지 않으면 모델 정확도가 감소합니다. 데이터 드리프트를 완화하려면 새 데이터에 대해 모델을 재교육하거나 새 데이터를 기반으로 모델을 업데이트하는 지속적인 학습 시스템을 구현해야 할 수 있습니다.
모델 붕괴: 모델 붕괴는 시간이 지남에 따라 모델의 성능이 점차 감소할 때 발생합니다. 이는 데이터 분포의 변화, 비즈니스 문제의 변화, 새로운 경쟁의 등장 등 다양한 요인에 의해 발생합니다. 모델 부패를 완화하려면 모델을 주기적으로 재교육하거나 지속적인 학습 시스템을 구현해야 할 수도 있습니다.
모델 모니터링: 모델이 필요한 수준의 정확도를 계속 달성하고 있는지 정기적으로 모니터링하세요. 이는 모델 선택 중에 모델을 평가하는 데 사용되는 성능 지표와 같은 지표를 사용하여 수행할 수 있습니다. 모델 성능이 저하되기 시작하면 모델 재교육, 하이퍼파라미터 조정 등의 수정 조치를 취해야 할 수도 있습니다.
모델 유지 관리는 지속적인 프로세스이며 이 단계는 성공적인 ML 프로젝트에 필수적입니다. 모델 성능을 정기적으로 모니터링하고 업데이트하면 모델의 정확성을 유지하고 시간이 지나도 계속 가치를 제공할 수 있습니다.
위 내용은 ML 모델 선택 팁의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Hiddenlayer의 획기적인 연구는 LLMS (Leading Lange Language Models)에서 중요한 취약점을 드러냅니다. 그들의 연구 결과는 "정책 인형극"이라는 보편적 인 바이 패스 기술을 보여줍니다.

환경 책임과 폐기물 감소에 대한 추진은 기본적으로 비즈니스 운영 방식을 바꾸는 것입니다. 이 혁신은 제품 개발, 제조 프로세스, 고객 관계, 파트너 선택 및 새로운 채택에 영향을 미칩니다.

Advanced AI 하드웨어에 대한 최근 제한은 AI 지배에 대한 확대 된 지정 학적 경쟁을 강조하여 중국의 외국 반도체 기술에 대한 의존도를 드러냅니다. 2024 년에 중국은 3,800 억 달러 상당의 반도체를 수입했습니다.

Google의 Chrome의 잠재적 인 강제 매각은 기술 산업 내에서 강력한 논쟁을 불러 일으켰습니다. OpenAi가 65%의 글로벌 시장 점유율을 자랑하는 주요 브라우저를 인수 할 가능성은 TH의 미래에 대한 중요한 의문을 제기합니다.

전반적인 광고 성장을 능가 함에도 불구하고 소매 미디어의 성장은 느려지고 있습니다. 이 성숙 단계는 생태계 조각화, 비용 상승, 측정 문제 및 통합 복잡성을 포함한 과제를 제시합니다. 그러나 인공 지능

깜박 거리는 스크린 모음 속에서 정적으로 오래된 라디오가 딱딱합니다. 이 불안정한 전자 제품 더미, 쉽게 불안정하게, 몰입 형 전시회에서 6 개의 설치 중 하나 인 "The-Waste Land"의 핵심을 형성합니다.

Google Cloud의 다음 2025 : 인프라, 연결 및 AI에 대한 초점 Google Cloud의 다음 2025 회의는 수많은 발전을 선보였으며 여기에서 자세히 설명하기에는 너무 많았습니다. 특정 공지 사항에 대한 심도있는 분석은 My의 기사를 참조하십시오.

이번 주 AI 및 XR : AI 구동 창의성의 물결은 음악 세대에서 영화 제작에 이르기까지 미디어와 엔터테인먼트를 통해 휩쓸고 있습니다. 헤드 라인으로 뛰어 들자. AI 생성 콘텐츠의 영향력 증가 : 기술 컨설턴트 인 Shelly Palme


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기
