찾다
백엔드 개발파이썬 튜토리얼Pandas로 txt 파일을 읽기 위한 빠른 시작 가이드

Pandas로 txt 파일을 읽기 위한 빠른 시작 가이드

Pandas는 데이터를 읽고 조작하고 분석하는 데 사용할 수 있는 데이터 처리 라이브러리입니다. 이 기사에서는 Pandas를 사용하여 txt 파일을 읽는 방법을 소개합니다. 이 글은 Pandas를 배우고자 하는 초보자를 위한 것입니다.

  1. Pandas 라이브러리 가져오기

먼저 Python에서 Pandas 라이브러리를 가져옵니다.

import pandas as pd
  1. txt 파일 읽기

txt 파일을 읽기 전에 txt 파일의 몇 가지 공통 매개변수를 이해해야 합니다.

  • 구분 기호: 구분 기호
  • 헤더: 헤더가 있는지 여부 열 이름을 수동으로 지정할 수 있습니다.
  • index_col: 특정 열을 기본적으로 설정되지 않은 인덱스 열로 설정합니다.
  • skiprows: 이전 행 수 건너뛰기
  • sep: 구분 기호 지정
  • 예: 파일 이름은 "data.txt"입니다. 먼저 read_table() 함수를 사용하여 txt 파일을 읽어야 합니다. read_table()은 텍스트 데이터를 읽는 매우 유연한 방법을 제공합니다.
data = pd.read_table('data.txt', delimiter=',', header=0)

읽은 데이터 보기
기능을 사용하면 읽은 데이터의 처음 몇 행을 볼 수 있습니다. 기본적으로 데이터의 처음 5개 행이 표시됩니다.

print(data.head())
.head()

Data Cleaning
  1. 데이터를 읽은 후 필요한 정리 및 변환을 수행해야 합니다. 여기에는 일반적으로 쓸모 없는 열 제거, 누락된 값 제거, 열 이름 변경, 데이터 유형 변환 등이 포함됩니다. 다음은 몇 가지 일반적인 데이터 정리 방법입니다.

쓸데없는 열 제거:
  • data = data.drop(columns=['ID'])
누락된 값 제거:
  • data.dropna(inplace=True)
열 이름 바꾸기:
  • data = data.rename(columns={'OldName': 'NewName'})
데이터 유형 변환:
  • data['ColumnName'] = data['ColumnName'].astype(str)
    data['ColumnName'] = data['ColumnName'].astype(int)
데이터 분석
  1. 데이터 정리 후에는 다음을 수행할 수 있습니다. 데이터 분석을 시작합니다. Pandas는 데이터를 처리하는 다양한 방법을 제공합니다.

예를 들어 열의 합계를 계산하려면:

total = data['ColumnName'].sum()
print(total)

Pandas에서는 groupby() 함수를 사용하여 데이터를 그룹화할 수 있습니다. 예를 들어 데이터를 이름별로 그룹화하고 그룹화 후 평균을 계산한다고 가정해 보겠습니다.

grouped_data = data.groupby(['Name']).mean()
print(grouped_data.head())

Data Visualization
  1. 마지막으로 데이터 시각화를 통해 데이터의 추세와 패턴을 더 명확하게 이해할 수 있습니다.
import matplotlib.pyplot as plt

plt.bar(data['ColumnName'], data['Count'])
plt.xlabel('ColumnName')
plt.ylabel('Count')
plt.title('ColumnName vs Count')
plt.show()

요약하자면 Pandas는 데이터를 읽고, 정리하고, 분석하는 편리하고 빠른 방법을 제공합니다. 이 기사를 통해 독자는 Pandas를 사용하여 txt 파일을 읽는 방법과 데이터 정리, 분석 및 시각화를 수행하는 방법을 배울 수 있습니다.

위 내용은 Pandas로 txt 파일을 읽기 위한 빠른 시작 가이드의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
파이썬 : 자동화, 스크립팅 및 작업 관리파이썬 : 자동화, 스크립팅 및 작업 관리Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

파이썬과 시간 : 공부 시간을 최대한 활용파이썬과 시간 : 공부 시간을 최대한 활용Apr 14, 2025 am 12:02 AM

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

파이썬 : 게임, Guis 등파이썬 : 게임, Guis 등Apr 13, 2025 am 12:14 AM

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python vs. C : 응용 및 사용 사례가 비교되었습니다Python vs. C : 응용 및 사용 사례가 비교되었습니다Apr 12, 2025 am 12:01 AM

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간의 파이썬 계획 : 현실적인 접근2 시간의 파이썬 계획 : 현실적인 접근Apr 11, 2025 am 12:04 AM

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

파이썬 : 기본 응용 프로그램 탐색파이썬 : 기본 응용 프로그램 탐색Apr 10, 2025 am 09:41 AM

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 ​​같은 작업에 적합합니다.

2 시간 안에 얼마나 많은 파이썬을 배울 수 있습니까?2 시간 안에 얼마나 많은 파이썬을 배울 수 있습니까?Apr 09, 2025 pm 04:33 PM

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 프로젝트 및 문제 중심 방법에서 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법?10 시간 이내에 프로젝트 및 문제 중심 방법에서 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법?Apr 02, 2025 am 07:18 AM

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 채팅 명령 및 사용 방법
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

PhpStorm 맥 버전

PhpStorm 맥 버전

최신(2018.2.1) 전문 PHP 통합 개발 도구

WebStorm Mac 버전

WebStorm Mac 버전

유용한 JavaScript 개발 도구