찾다
기술 주변기기일체 포함AI는 학습되지 않습니다! 새로운 연구에 따르면 AI 블랙박스를 해독하는 방법이 밝혀졌습니다.

인공지능(AI)은 빠르게 발전해 왔지만, 인간에게 강력한 모델은 '블랙박스'입니다.

우리는 모델의 내부 작동 방식과 모델이 결론에 도달하는 프로세스를 이해하지 못합니다.

그러나 최근 본 대학의 화학정보학 전문가인 Jurgen Bajorath 교수와 그의 팀이 획기적인 발전을 이루었습니다.

그들은 약물 연구에 사용되는 일부 인공 지능 시스템이 어떻게 작동하는지 보여주는 기술을 설계했습니다.

연구에 따르면 인공지능 모델은 특정 화학적 상호작용을 학습하기보다는 주로 기존 데이터를 회상하여 약물 효과를 예측하는 것으로 나타났습니다.

——즉, AI 예측은 순전히 기억을 연결하는 데에만 의존하며 머신러닝은 실제로 학습하지 않습니다!

그들의 연구 결과는 최근 Nature Machine Intelligence 저널에 게재되었습니다.

AI는 학습되지 않습니다! 새로운 연구에 따르면 AI 블랙박스를 해독하는 방법이 밝혀졌습니다.

논문 주소: https://www.nature.com/articles/s42256-023-00756-9

의학 분야에서 연구자들은 질병 퇴치에 효과적인 활성 물질을 열심히 찾고 있습니다. —가장 효과적인 약물 분자는 무엇입니까?

보통 이러한 효과적인 분자(화합물)는 단백질에 도킹되어 특정 생리학적 작용 사슬을 유발하는 효소 또는 수용체 역할을 합니다.

특수한 경우 특정 분자는 과도한 염증 반응과 같은 신체의 부작용을 차단하는 역할도 합니다.

가능한 화합물의 수는 엄청나며 효과가 있는 화합물을 찾는 것은 건초 더미에서 바늘을 찾는 것과 같습니다.

그래서 연구자들은 먼저 AI 모델을 사용하여 어떤 분자가 가장 잘 도킹되어 각각의 표적 단백질에 강력하게 결합할지 예측했습니다. 이러한 약물 후보는 실험 연구를 통해 더욱 자세히 선별됩니다.

AI는 학습되지 않습니다! 새로운 연구에 따르면 AI 블랙박스를 해독하는 방법이 밝혀졌습니다.

인공지능이 발달한 이후 신약 발굴 연구에서는 AI 관련 기술을 점점 더 많이 채택하고 있습니다.

예를 들어 그래프 신경망(GNN)은 특정 분자와 표적 단백질의 결합 강도를 예측하는 데 적합합니다.

그래프는 객체를 나타내는 노드와 노드 간의 관계를 나타내는 엣지로 구성됩니다. 단백질-리간드 복합체의 그래프 표현에서 그래프의 가장자리는 단백질 또는 리간드 노드를 연결하여 물질의 구조 또는 단백질과 리간드 간의 상호 작용을 나타냅니다.

GNN 모델은 X선 구조에서 추출된 단백질-리간드 상호작용 맵을 사용하여 리간드 친화도를 예측합니다.

Jurgen Bajorath 교수는 GNN 모델이 우리에게 블랙박스와 같아서 어떻게 예측이 도출되는지 알 수 있는 방법이 없다고 말했습니다.

AI는 학습되지 않습니다! 새로운 연구에 따르면 AI 블랙박스를 해독하는 방법이 밝혀졌습니다.

Jurgen Bajorath 교수는 본 대학교 LIMES 연구소, 본-아헨 국제 정보 기술 센터(Bonn-Aachen International Center for Information Technology) 및 Lamarr 기계 학습 및 인공 지능 연구소에서 근무하고 있습니다. (Lamarr 기계 학습 및 인공 지능 연구소).

인공지능은 어떻게 작동하나요?

본 대학 화학 정보학과의 연구원들은 로마 사피엔자 대학의 동료들과 함께 그래프 신경망이 실제로 단백질과 리간드 사이의 상호 작용을 학습했는지 자세히 분석했습니다.

연구원들은 특별히 개발된 "EdgeSHAPer" 방법을 사용하여 총 6개의 서로 다른 GNN 아키텍처를 분석했습니다.

EdgeSHAPer 프로그램은 GNN이 화합물과 단백질 간의 가장 중요한 상호 작용을 학습했는지, 아니면 다른 방법을 통해 예측했는지 확인할 수 있습니다.

과학자들은 단백질-리간드 복합체의 구조에서 추출한 그래프를 사용하여 6개의 GNN을 훈련시켰습니다. 여기서 화합물의 작용 방식과 표적 단백질에 대한 결합 강도가 알려져 있습니다.

그런 다음 훈련된 GNN을 다른 화합물에 대해 테스트하고 EdgeSHAPer를 사용하여 GNN이 어떻게 예측을 생성하는지 분석합니다.

"GNN이 예상대로 작동한다면 화합물과 표적 단백질 간의 상호 작용을 학습하고 특정 상호 작용의 우선 순위를 정하여 예측해야 합니다."

그러나 연구팀의 분석에 따르면 6개의 GNN은 기본적으로 이를 수행하지 못했습니다. 대부분의 GNN은 주로 리간드에 초점을 맞춰 일부 단백질-약물 상호작용만 학습합니다.

AI는 학습되지 않습니다! 새로운 연구에 따르면 AI 블랙박스를 해독하는 방법이 밝혀졌습니다.

위 그림은 6개 GNN의 실험 결과를 보여줍니다. 색상 눈금 막대는 EdgeSHAPer가 결정한 각 예측의 상위 25개 가장자리에 있는 단백질, 리간드 및 상호 작용의 평균 비율을 나타냅니다.

녹색으로 표시되는 상호 작용은 모델이 학습해야 하는 부분이지만 전체 실험에서 차지하는 비율은 높지 않으며 리간드를 나타내는 주황색 막대가 가장 큰 비율을 차지함을 알 수 있습니다.

표적 단백질에 대한 분자의 결합 강도를 예측하기 위해 모델은 표적 단백질에 관계없이 훈련 중에 접한 화학적으로 유사한 분자와 결합 데이터를 기본적으로 "기억"합니다. 이러한 기억된 화학적 유사성은 본질적으로 예측을 결정합니다.

AI는 학습되지 않습니다! 새로운 연구에 따르면 AI 블랙박스를 해독하는 방법이 밝혀졌습니다.

이것은 "영리한 한스 효과"를 연상시킵니다. 마치 셀 수 있는 것처럼 보이지만 실제로는 동료의 표정과 몸짓의 뉘앙스를 기반으로 예상되는 결과를 추론하는 말과 같습니다. 결과.

이는 GNN의 소위 "학습 능력"이 유지될 수 없으며 화학적 지식과 더 간단한 방법을 사용하여 동일한 품질 예측을 수행할 수 있기 때문에 모델의 예측이 크게 과대평가되었음을 의미할 수 있습니다.

그러나 연구에서 또 다른 현상도 발견되었습니다. 테스트 화합물의 효능이 증가하면 모델이 더 많은 상호 작용을 학습하는 경향이 있다는 것입니다.

아마도 표현 및 훈련 기술을 수정하면 이러한 GNN이 원하는 방향으로 더욱 향상될 수 있습니다. 그러나 분자 그래프를 통해 물리량을 학습할 수 있다는 가정은 일반적으로 주의해서 다루어야 합니다.

"인공지능은 흑마술이 아니다."

위 내용은 AI는 학습되지 않습니다! 새로운 연구에 따르면 AI 블랙박스를 해독하는 방법이 밝혀졌습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 51CTO.COM에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
신속한 엔지니어링에서 생각의 그래프는 무엇입니까?신속한 엔지니어링에서 생각의 그래프는 무엇입니까?Apr 13, 2025 am 11:53 AM

소개 신속한 엔지니어링에서 "Thought of Thought"는 그래프 이론을 사용하여 AI의 추론 과정을 구성하고 안내하는 새로운 접근법을 나타냅니다. 종종 선형 S와 관련된 전통적인 방법과 달리

Genai 에이전트와 함께 조직의 이메일 마케팅을 최적화하십시오Genai 에이전트와 함께 조직의 이메일 마케팅을 최적화하십시오Apr 13, 2025 am 11:44 AM

소개 축하해요! 당신은 성공적인 사업을 운영합니다. 웹 페이지, 소셜 미디어 캠페인, 웹 세미나, 컨퍼런스, 무료 리소스 및 기타 소스를 통해 매일 5000 개의 이메일 ID를 수집합니다. 다음 명백한 단계는입니다

Apache Pinot을 사용한 실시간 앱 성능 모니터링Apache Pinot을 사용한 실시간 앱 성능 모니터링Apr 13, 2025 am 11:40 AM

소개 오늘날의 빠르게 진행되는 소프트웨어 개발 환경에서 최적의 애플리케이션 성능이 중요합니다. 응답 시간, 오류율 및 자원 활용과 같은 실시간 메트릭 모니터링 메인이 도움이 될 수 있습니다.

Chatgpt가 10 억 명의 사용자를 쳤습니까? Openai CEO는'몇 주 만에 두 배가되었습니다Chatgpt가 10 억 명의 사용자를 쳤습니까? Openai CEO는'몇 주 만에 두 배가되었습니다Apr 13, 2025 am 11:23 AM

"얼마나 많은 사용자가 있습니까?" 그는 자극했다. Altman은“마지막으로 우리가 마지막으로 말한 것은 매주 5 억 명의 행위자이며 매우 빠르게 성장하고 있다고 생각합니다. 앤더슨은 계속해서“당신은 나에게 몇 주 만에 두 배가되었다고 말했습니다. “저는 그 개인이라고 말했습니다

Pixtral -12B : Mistral AI의 첫 번째 멀티 모드 모델 -Anuctics VidhyaPixtral -12B : Mistral AI의 첫 번째 멀티 모드 모델 -Anuctics VidhyaApr 13, 2025 am 11:20 AM

소개 Mistral은 최초의 멀티 모드 모델, 즉 Pixtral-12B-2409를 발표했습니다. 이 모델은 Mistral의 120 억 개의 매개 변수 인 NEMO 12B를 기반으로합니다. 이 모델을 차별화하는 것은 무엇입니까? 이제 이미지와 Tex를 모두 가져갈 수 있습니다

생성 AI 응용 프로그램을위한 에이전트 프레임 워크 - 분석 Vidhya생성 AI 응용 프로그램을위한 에이전트 프레임 워크 - 분석 VidhyaApr 13, 2025 am 11:13 AM

쿼리에 응답 할뿐만 아니라 자율적으로 정보를 모으고, 작업을 실행하며, 여러 유형의 데이터 (텍스트, 이미지 및 코드를 처리하는 AI 구동 조수가 있다고 상상해보십시오. 미래처럼 들리나요? 이것에서

금융 부문에서 생성 AI의 응용금융 부문에서 생성 AI의 응용Apr 13, 2025 am 11:12 AM

소개 금융 산업은 효율적인 거래 및 신용 가용성을 촉진함으로써 경제 성장을 주도하기 때문에 모든 국가 개발의 초석입니다. 거래가 발생하는 용이성 및 신용

온라인 학습 및 수동 공격 알고리즘 안내온라인 학습 및 수동 공격 알고리즘 안내Apr 13, 2025 am 11:09 AM

소개 소셜 미디어, 금융 거래 및 전자 상거래 플랫폼과 같은 소스에서 전례없는 속도로 데이터가 생성되고 있습니다. 이 지속적인 정보 스트림을 처리하는 것은 어려운 일이지만

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

Dreamweaver Mac版

Dreamweaver Mac版

시각적 웹 개발 도구

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.