찾다
기술 주변기기일체 포함AI는 학습되지 않습니다! 새로운 연구에 따르면 AI 블랙박스를 해독하는 방법이 밝혀졌습니다.

인공지능(AI)은 빠르게 발전해 왔지만, 인간에게 강력한 모델은 '블랙박스'입니다.

우리는 모델의 내부 작동 방식과 모델이 결론에 도달하는 프로세스를 이해하지 못합니다.

그러나 최근 본 대학의 화학정보학 전문가인 Jurgen Bajorath 교수와 그의 팀이 획기적인 발전을 이루었습니다.

그들은 약물 연구에 사용되는 일부 인공 지능 시스템이 어떻게 작동하는지 보여주는 기술을 설계했습니다.

연구에 따르면 인공지능 모델은 특정 화학적 상호작용을 학습하기보다는 주로 기존 데이터를 회상하여 약물 효과를 예측하는 것으로 나타났습니다.

——즉, AI 예측은 순전히 기억을 연결하는 데에만 의존하며 머신러닝은 실제로 학습하지 않습니다!

그들의 연구 결과는 최근 Nature Machine Intelligence 저널에 게재되었습니다.

AI는 학습되지 않습니다! 새로운 연구에 따르면 AI 블랙박스를 해독하는 방법이 밝혀졌습니다.

논문 주소: https://www.nature.com/articles/s42256-023-00756-9

의학 분야에서 연구자들은 질병 퇴치에 효과적인 활성 물질을 열심히 찾고 있습니다. —가장 효과적인 약물 분자는 무엇입니까?

보통 이러한 효과적인 분자(화합물)는 단백질에 도킹되어 특정 생리학적 작용 사슬을 유발하는 효소 또는 수용체 역할을 합니다.

특수한 경우 특정 분자는 과도한 염증 반응과 같은 신체의 부작용을 차단하는 역할도 합니다.

가능한 화합물의 수는 엄청나며 효과가 있는 화합물을 찾는 것은 건초 더미에서 바늘을 찾는 것과 같습니다.

그래서 연구자들은 먼저 AI 모델을 사용하여 어떤 분자가 가장 잘 도킹되어 각각의 표적 단백질에 강력하게 결합할지 예측했습니다. 이러한 약물 후보는 실험 연구를 통해 더욱 자세히 선별됩니다.

AI는 학습되지 않습니다! 새로운 연구에 따르면 AI 블랙박스를 해독하는 방법이 밝혀졌습니다.

인공지능이 발달한 이후 신약 발굴 연구에서는 AI 관련 기술을 점점 더 많이 채택하고 있습니다.

예를 들어 그래프 신경망(GNN)은 특정 분자와 표적 단백질의 결합 강도를 예측하는 데 적합합니다.

그래프는 객체를 나타내는 노드와 노드 간의 관계를 나타내는 엣지로 구성됩니다. 단백질-리간드 복합체의 그래프 표현에서 그래프의 가장자리는 단백질 또는 리간드 노드를 연결하여 물질의 구조 또는 단백질과 리간드 간의 상호 작용을 나타냅니다.

GNN 모델은 X선 구조에서 추출된 단백질-리간드 상호작용 맵을 사용하여 리간드 친화도를 예측합니다.

Jurgen Bajorath 교수는 GNN 모델이 우리에게 블랙박스와 같아서 어떻게 예측이 도출되는지 알 수 있는 방법이 없다고 말했습니다.

AI는 학습되지 않습니다! 새로운 연구에 따르면 AI 블랙박스를 해독하는 방법이 밝혀졌습니다.

Jurgen Bajorath 교수는 본 대학교 LIMES 연구소, 본-아헨 국제 정보 기술 센터(Bonn-Aachen International Center for Information Technology) 및 Lamarr 기계 학습 및 인공 지능 연구소에서 근무하고 있습니다. (Lamarr 기계 학습 및 인공 지능 연구소).

인공지능은 어떻게 작동하나요?

본 대학 화학 정보학과의 연구원들은 로마 사피엔자 대학의 동료들과 함께 그래프 신경망이 실제로 단백질과 리간드 사이의 상호 작용을 학습했는지 자세히 분석했습니다.

연구원들은 특별히 개발된 "EdgeSHAPer" 방법을 사용하여 총 6개의 서로 다른 GNN 아키텍처를 분석했습니다.

EdgeSHAPer 프로그램은 GNN이 화합물과 단백질 간의 가장 중요한 상호 작용을 학습했는지, 아니면 다른 방법을 통해 예측했는지 확인할 수 있습니다.

과학자들은 단백질-리간드 복합체의 구조에서 추출한 그래프를 사용하여 6개의 GNN을 훈련시켰습니다. 여기서 화합물의 작용 방식과 표적 단백질에 대한 결합 강도가 알려져 있습니다.

그런 다음 훈련된 GNN을 다른 화합물에 대해 테스트하고 EdgeSHAPer를 사용하여 GNN이 어떻게 예측을 생성하는지 분석합니다.

"GNN이 예상대로 작동한다면 화합물과 표적 단백질 간의 상호 작용을 학습하고 특정 상호 작용의 우선 순위를 정하여 예측해야 합니다."

그러나 연구팀의 분석에 따르면 6개의 GNN은 기본적으로 이를 수행하지 못했습니다. 대부분의 GNN은 주로 리간드에 초점을 맞춰 일부 단백질-약물 상호작용만 학습합니다.

AI는 학습되지 않습니다! 새로운 연구에 따르면 AI 블랙박스를 해독하는 방법이 밝혀졌습니다.

위 그림은 6개 GNN의 실험 결과를 보여줍니다. 색상 눈금 막대는 EdgeSHAPer가 결정한 각 예측의 상위 25개 가장자리에 있는 단백질, 리간드 및 상호 작용의 평균 비율을 나타냅니다.

녹색으로 표시되는 상호 작용은 모델이 학습해야 하는 부분이지만 전체 실험에서 차지하는 비율은 높지 않으며 리간드를 나타내는 주황색 막대가 가장 큰 비율을 차지함을 알 수 있습니다.

표적 단백질에 대한 분자의 결합 강도를 예측하기 위해 모델은 표적 단백질에 관계없이 훈련 중에 접한 화학적으로 유사한 분자와 결합 데이터를 기본적으로 "기억"합니다. 이러한 기억된 화학적 유사성은 본질적으로 예측을 결정합니다.

AI는 학습되지 않습니다! 새로운 연구에 따르면 AI 블랙박스를 해독하는 방법이 밝혀졌습니다.

이것은 "영리한 한스 효과"를 연상시킵니다. 마치 셀 수 있는 것처럼 보이지만 실제로는 동료의 표정과 몸짓의 뉘앙스를 기반으로 예상되는 결과를 추론하는 말과 같습니다. 결과.

이는 GNN의 소위 "학습 능력"이 유지될 수 없으며 화학적 지식과 더 간단한 방법을 사용하여 동일한 품질 예측을 수행할 수 있기 때문에 모델의 예측이 크게 과대평가되었음을 의미할 수 있습니다.

그러나 연구에서 또 다른 현상도 발견되었습니다. 테스트 화합물의 효능이 증가하면 모델이 더 많은 상호 작용을 학습하는 경향이 있다는 것입니다.

아마도 표현 및 훈련 기술을 수정하면 이러한 GNN이 원하는 방향으로 더욱 향상될 수 있습니다. 그러나 분자 그래프를 통해 물리량을 학습할 수 있다는 가정은 일반적으로 주의해서 다루어야 합니다.

"인공지능은 흑마술이 아니다."

위 내용은 AI는 학습되지 않습니다! 새로운 연구에 따르면 AI 블랙박스를 해독하는 방법이 밝혀졌습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 51CTO.COM에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
Let 's Dance : 인간 신경 그물을 미세 조정하기위한 구조화 된 움직임Let 's Dance : 인간 신경 그물을 미세 조정하기위한 구조화 된 움직임Apr 27, 2025 am 11:09 AM

과학자들은 C. el 그러나 중요한 질문이 발생합니다. 새로운 AI S와 함께 효과적으로 작동하도록 우리 자신의 신경망을 어떻게 조정합니까?

새로운 Google 유출은 Gemini AI의 구독 변경을 보여줍니다새로운 Google 유출은 Gemini AI의 구독 변경을 보여줍니다Apr 27, 2025 am 11:08 AM

Google의 Gemini Advanced : 수평선의 새로운 가입 계층 현재 Gemini Advanced에 액세스하려면 $ 19.99/월 Google One AI Premium Plan이 필요합니다. 그러나 Android Authority 보고서는 다가오는 변경 사항을 암시합니다. 최신 Google p. 내 코드

데이터 분석 가속이 AI의 숨겨진 병목 현상을 해결하는 방법데이터 분석 가속이 AI의 숨겨진 병목 현상을 해결하는 방법Apr 27, 2025 am 11:07 AM

고급 AI 기능을 둘러싼 과대 광고에도 불구하고 Enterprise AI 배포 내에서 상당한 도전 과제 : 데이터 처리 병목 현상. CEO는 AI 발전을 축하하는 동안 엔지니어는 느린 쿼리 시간, 과부하 파이프 라인,

Markitdown MCP는 모든 문서를 Markdowns로 변환 할 수 있습니다!Markitdown MCP는 모든 문서를 Markdowns로 변환 할 수 있습니다!Apr 27, 2025 am 09:47 AM

문서 처리는 더 이상 AI 프로젝트에서 파일을 여는 것이 아니라 혼돈을 명확하게 전환하는 것입니다. PDF, PowerPoint 및 Word와 같은 문서는 모든 모양과 크기로 워크 플로우를 범람합니다. 구조화 된 검색

빌딩 에이전트에 Google ADK를 사용하는 방법은 무엇입니까? - 분석 Vidhya빌딩 에이전트에 Google ADK를 사용하는 방법은 무엇입니까? - 분석 VidhyaApr 27, 2025 am 09:42 AM

Google의 에이전트 개발 키트 (ADK)의 전력을 활용하여 실제 기능을 갖춘 지능형 에이전트를 만듭니다! 이 튜토리얼은 Gemini 및 GPT와 같은 다양한 언어 모델을 지원하는 ADK를 사용하여 대화 에이전트를 구축하는 것을 안내합니다. w

효과적인 문제 해결을 위해 LLM을 통해 SLM 사용 - 분석 Vidhya효과적인 문제 해결을 위해 LLM을 통해 SLM 사용 - 분석 VidhyaApr 27, 2025 am 09:27 AM

요약: SLM (Small Language Model)은 효율성을 위해 설계되었습니다. 자원 결핍, 실시간 및 개인 정보 보호 환경에서 LLM (Large Language Model)보다 낫습니다. 초점 기반 작업, 특히 도메인 특이성, 제어 성 및 해석 성이 일반적인 지식이나 창의성보다 더 중요합니다. SLM은 LLM을 대체하지는 않지만 정밀, 속도 및 비용 효율성이 중요 할 때 이상적입니다. 기술은 더 적은 자원으로 더 많은 것을 달성하는 데 도움이됩니다. 그것은 항상 운전자가 아니라 프로모터였습니다. 증기 엔진 시대부터 인터넷 버블 시대에 이르기까지 기술의 힘은 문제를 해결하는 데 도움이되는 정도입니다. 인공 지능 (AI) 및보다 최근에 생성 AI가 예외는 아닙니다.

컴퓨터 비전 작업에 Google Gemini 모델을 사용하는 방법은 무엇입니까? - 분석 Vidhya컴퓨터 비전 작업에 Google Gemini 모델을 사용하는 방법은 무엇입니까? - 분석 VidhyaApr 27, 2025 am 09:26 AM

컴퓨터 비전을위한 Google Gemini의 힘을 활용 : 포괄적 인 가이드 주요 AI 챗봇 인 Google Gemini는 강력한 컴퓨터 비전 기능을 포괄하기 위해 대화를 넘어서 기능을 확장합니다. 이 안내서는 사용 방법에 대해 자세히 설명합니다

Gemini 2.0 Flash vs O4-Mini : Google은 OpenAi보다 더 잘할 수 있습니까?Gemini 2.0 Flash vs O4-Mini : Google은 OpenAi보다 더 잘할 수 있습니까?Apr 27, 2025 am 09:20 AM

2025 년의 AI 환경은 Google의 Gemini 2.0 Flash와 Openai의 O4-Mini가 도착하면서 전기가 전환됩니다. 이 최첨단 모델은 몇 주 간격으로 발사되어 비슷한 고급 기능과 인상적인 벤치 마크 점수를 자랑합니다. 이 심층적 인 비교

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

VSCode Windows 64비트 다운로드

VSCode Windows 64비트 다운로드

Microsoft에서 출시한 강력한 무료 IDE 편집기

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.