NVIDIA, Mila 및 Caltech는 신약 발견과 결합된 LLM의 다중 모드 분자 구조-텍스트 모델을 공동으로 출시합니다.
저자 | Liu Shengchao
편집자 | Kaixia
2021년부터 빅 언어와 다중 양식의 결합이 머신러닝 연구 커뮤니티를 휩쓸었습니다.
대형 모델과 다중 모드 애플리케이션의 개발로 이러한 기술을 신약 발견에 적용할 수 있을까요? 그리고 이러한 자연어 텍스트 설명이 이 어려운 문제에 대한 새로운 관점을 가져올 수 있습니까? 대답은 '예'이며 우리는 이에 대해 낙관하고 있습니다
최근 캐나다 몬트리올 학습 알고리즘 연구소(Mila), NVIDIA Research, 일리노이 대학 어바나-샴페인 캠퍼스(UIUC), 프린스턴 대학 및 캘리포니아 대학의 연구팀 Institute of Technology의 다중 모드 분자 구조 텍스트 모델 MoleculeSTM은 대조 학습 전략을 통해 분자의 화학 구조와 텍스트 설명을 공동 학습하여 제안됩니다.
이 연구는 "텍스트 기반 검색 및 편집을 위한 다중 모드 분자 구조-텍스트 모델"이라는 제목으로 2023년 12월 18일 "Nature Machine Intelligence"에 게재되었습니다.
논문 링크: https://www.nature.com/articles/s42256-023-00759-6 need to be rewrite
Liu Shengchao 박사가 첫 번째 저자이고 NVIDIA Research의 Anima Anandkumar 교수는 해당 저자. Nie Weili, Wang Chengpeng, Lu Jiarui, Qiao Zhuoran, Liu Ling, Tang Jian 및 Xiao Chaowei가 공동 저자입니다.
이 프로젝트는 2022년 3월 NVIDIA Research에 합류한 후 Liu Shengchao 박사가 Nie Weili 선생님, Tang Jian 선생님, Xiao Chaowei 선생님, Anima Anandkumar 선생님의 지도 하에 진행했습니다.
Liu Shengchao 박사는 다음과 같이 말했습니다. "우리의 동기는 LLM 및 약물 발견에 대한 예비 탐색을 수행하는 것이었고 마침내 MoleculeSTM을 제안했습니다."
도킹에 사용된 텍스트는 분자 편집을 안내하도록 설계되었습니다.
MoleculeSTM 핵심 아이디어 매우 간단하고 간단합니다. 즉, 분자 설명은 내부 화학 구조와 외부 기능 설명의 두 가지 범주로 나눌 수 있습니다. 여기서는 대조 사전 훈련 방법을 사용하여 이 두 가지 유형의 정보를 정렬하고 연결합니다. 구체적인 다이어그램은 아래 그림에 나와 있습니다
그림: MoleculeSTM 흐름도.
그리고 MoleculeSTM의 이러한 정렬은 매우 좋은 특성을 가지고 있습니다. 화학 공간에서 해결하기 어려운 작업이 있을 때 이를 자연어 공간으로 전달할 수 있습니다. 그리고 자연어 문제는 그 특성상 상대적으로 해결하기가 더 쉬울 것입니다. 이를 바탕으로 다양한 다운스트림 작업을 설계하여 그 효율성을 검증했습니다. 아래에서는 몇 가지 통찰력에 대해 자세히 논의합니다.
자연어 및 대형 언어 모델의 특징
MoleculeSTM에서는 처음으로 문제를 제기합니다. 자연어의 개방형 어휘와 조합적 특성을 활용합니다
- 개방형 어휘란 현재 인류의 모든 지식을 자연어로 표현할 수 있다는 뜻이므로, 미래에 나타날 새로운 지식도 기존의 언어를 이용하여 요약하고 요약할 수 있다는 뜻입니다. 요약하다. 예를 들어, 새로운 단백질이 나타나면 그 기능을 자연어로 설명하기를 희망합니다.
- 구성성은 자연어에서 복잡한 개념이 여러 개의 간단한 개념으로 결합되어 표현될 수 있다는 것을 의미합니다. 이는 다중 속성 편집과 같은 작업에 매우 유용합니다. 화학적 공간에서 동시에 여러 속성을 충족하도록 분자를 편집하는 것은 매우 어렵지만 자연 언어에서는 매우 간단하게 여러 속성을 표현할 수 있습니다.
최근 작업인 ChatDrug(https://arxiv.org/abs/2305.18090)에서 자연어와 대형 언어 모델 간의 대화 특성을 탐구했습니다. 이에 관심이 있는 친구들은 확인해보세요
특징- 유도과제 디자인이란 제품이나 시스템의 특성에 맞춰 과제를 기획하고 배열하는 디자인을 말합니다
기존 언어-이미지 과제의 경우 그림이나 텍스트 생성 등 예술과 관련된 과제로 볼 수 있습니다. 즉, 결과가 다양하고 불확실합니다. 그러나 과학적 발견은 특정 기능을 가진 작은 분자의 생성과 같이 일반적으로 비교적 명확한 결과를 갖는 과학적 문제입니다. 이로 인해 작업 설계에 더 큰 어려움이 발생합니다.
MoleculeSTM(부록 B)에서 우리는 두 가지 지침을 제안했습니다.
- 저희가 가장 먼저 고려하는 작업은 컴퓨터 시뮬레이션을 수행하고 결과를 얻을 수 있는 능력입니다. 향후에는 Wet Lab 검증 결과가 고려될 예정이지만 이는 현재 작업 범위에 포함되지 않습니다.
- 둘째, 결과가 모호한 문제만 고려합니다. 구체적인 예로는 특정 분자를 더 수용성 또는 침투성으로 만드는 것이 포함됩니다. 분자의 특정 위치에 특정 작용기를 추가하는 것과 같은 일부 문제는 명확한 결과를 가져옵니다. 우리는 그러한 작업이 약물 및 화학 전문가에게 더 간단하고 간단하다고 믿습니다. 따라서 향후 개념 증명 작업으로 사용할 수 있지만 주요 작업 대상이 되지는 않습니다.
이로부터 우리는 세 가지 광범위한 작업 범주를 설계했습니다.
- 제로샷 구조 텍스트 검색
- 제로샷 텍스트 기반 분자 편집
- 분자 특성 예측.
다음 섹션에서는 두 번째 작업에 중점을 둘 것입니다
분자 편집의 정성적 결과는 다음과 같이 다시 설명됩니다.
이 작업은 분자 및 자연어 설명(예: 추가 속성)을 입력하는 것입니다. 동시에, 새로운 분자에 대한 복잡한 언어 텍스트 설명을 출력할 수 있는 것이 바람직합니다. 이는 텍스트 기반 리드 최적화입니다.
구체적인 방법은 이미 훈련된 분자 생성 모델과 사전 훈련된 MoleculeSTM을 사용하여 잠재 공간의 정렬을 학습하여 잠재 공간 보간을 수행한 다음 디코딩을 통해 대상 분자를 생성하는 것입니다. 프로세스 다이어그램은 다음과 같습니다.
다시 작성해야 하는 내용은 다음과 같습니다. 제로 샘플 텍스트 기반 분자 편집의 2단계 프로세스 다이어그램
여기서 여러 그룹의 분자 편집의 질적 결과를 보여 주며 다음과 같이 다시 설명합니다. 나머지 다운스트림 작업의 결과에 대한 자세한 내용은 원본 논문을 참조하세요. 우리는 주로 네 가지 유형의 분자 편집 작업을 고려합니다.
- 단일 속성 편집: 수용성, 침투성, 수소 결합 기증자 및 수용체 수와 같은 단일 속성 편집.
- 복합 속성 편집: 수용성, 수소 결합 기증자 수 등 여러 속성을 동시에 편집합니다.
- 약물 유사성 편집: (부록 D.5)는 입력 분자와 표적 분자 약물을 더 가깝게 보이게 만드는 것입니다.
- 특허의약품 이웃검색 : 특허를 받은 의약품의 경우 중간의약품이 함께 신고되는 경우가 많습니다. 여기서 우리가 하는 일은 중간 약물과 자연어 설명을 결합하여 최종 표적 약물을 생성할 수 있는지 확인하는 것입니다.
- 결합 친화도 편집기: 입력 분자와 표적 사이의 결합 친화도를 높이기 위해 여러 ChEMBL 분석을 표적으로 선택했습니다.
결과 표시: 제로 샘플 텍스트 안내 분자 편집. (참고: 이것은 원문을 중국어로 직접 번역한 것입니다.)
더 흥미로운 것은 마지막 유형의 작업입니다. MoleculeSTM은 실제로 표적 단백질의 텍스트 설명을 기반으로 리간드 매칭을 수행할 수 있다는 것을 발견했습니다. 최적화. (참고: 여기의 단백질 구조 정보는 평가 후에만 알려집니다.)
위 내용은 NVIDIA, Mila 및 Caltech는 신약 발견과 결합된 LLM의 다중 모드 분자 구조-텍스트 모델을 공동으로 출시합니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

소개 신속한 엔지니어링에서 "Thought of Thought"는 그래프 이론을 사용하여 AI의 추론 과정을 구성하고 안내하는 새로운 접근법을 나타냅니다. 종종 선형 S와 관련된 전통적인 방법과 달리

소개 축하해요! 당신은 성공적인 사업을 운영합니다. 웹 페이지, 소셜 미디어 캠페인, 웹 세미나, 컨퍼런스, 무료 리소스 및 기타 소스를 통해 매일 5000 개의 이메일 ID를 수집합니다. 다음 명백한 단계는입니다

소개 오늘날의 빠르게 진행되는 소프트웨어 개발 환경에서 최적의 애플리케이션 성능이 중요합니다. 응답 시간, 오류율 및 자원 활용과 같은 실시간 메트릭 모니터링 메인이 도움이 될 수 있습니다.

"얼마나 많은 사용자가 있습니까?" 그는 자극했다. Altman은“마지막으로 우리가 마지막으로 말한 것은 매주 5 억 명의 행위자이며 매우 빠르게 성장하고 있다고 생각합니다. 앤더슨은 계속해서“당신은 나에게 몇 주 만에 두 배가되었다고 말했습니다. “저는 그 개인이라고 말했습니다

소개 Mistral은 최초의 멀티 모드 모델, 즉 Pixtral-12B-2409를 발표했습니다. 이 모델은 Mistral의 120 억 개의 매개 변수 인 NEMO 12B를 기반으로합니다. 이 모델을 차별화하는 것은 무엇입니까? 이제 이미지와 Tex를 모두 가져갈 수 있습니다

쿼리에 응답 할뿐만 아니라 자율적으로 정보를 모으고, 작업을 실행하며, 여러 유형의 데이터 (텍스트, 이미지 및 코드를 처리하는 AI 구동 조수가 있다고 상상해보십시오. 미래처럼 들리나요? 이것에서

소개 금융 산업은 효율적인 거래 및 신용 가용성을 촉진함으로써 경제 성장을 주도하기 때문에 모든 국가 개발의 초석입니다. 거래가 발생하는 용이성 및 신용

소개 소셜 미디어, 금융 거래 및 전자 상거래 플랫폼과 같은 소스에서 전례없는 속도로 데이터가 생성되고 있습니다. 이 지속적인 정보 스트림을 처리하는 것은 어려운 일이지만


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

WebStorm Mac 버전
유용한 JavaScript 개발 도구

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기
