찾다
백엔드 개발파이썬 튜토리얼Pandas를 사용한 데이터 시각화 및 탐색적 데이터 분석을 위한 팁과 방법

Pandas를 사용한 데이터 시각화 및 탐색적 데이터 분석을 위한 팁과 방법

데이터 시각화 및 탐색적 분석을 위해 팬더를 사용하는 방법

소개:
데이터 분석 과정에서 시각화 및 탐색적 분석은 필수적인 링크입니다. Pandas는 Python의 매우 강력한 데이터 분석 라이브러리이며 데이터 처리 기능 외에도 데이터 시각화 및 탐색 분석을 위한 일련의 도구도 제공합니다. 이 기사에서는 데이터 시각화 및 탐색 분석을 위해 팬더를 사용하는 방법을 소개하고 구체적인 코드 예제를 제공합니다.

1. 데이터 시각화
1. 꺾은선형 차트
꺾은선형 차트는 시간에 따른 데이터 변화 추세를 보여주는 데 사용할 수 있는 일반적으로 사용되는 데이터 시각화 방법입니다. 팬더를 사용하여 꺾은선형 차트를 그리는 것은 매우 간단합니다. DataFrame의 플롯 메서드를 호출하기만 하면 됩니다. 다음은 샘플 코드입니다.

import pandas as pd

# 创建一个DataFrame
data = {'日期': ['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04'],
        '销售额': [100, 200, 150, 180]}
df = pd.DataFrame(data)

# 将日期列转换成日期类型
df['日期'] = pd.to_datetime(df['日期'])

# 设置日期列为索引
df.set_index('日期', inplace=True)

# 绘制折线图
df.plot()

2. 히스토그램
히스토그램은 다양한 범주의 데이터를 비교하는 일반적인 시각화 방법입니다. 마찬가지로, pandas를 사용하여 히스토그램을 그리는 것도 매우 간단합니다. DataFrame의 플롯 메서드를 호출하고 종류 매개변수를 'bar'로 설정하기만 하면 됩니다. 다음은 샘플 코드입니다.

import pandas as pd

# 创建一个DataFrame
data = {'城市': ['北京', '上海', '广州', '深圳'],
        '人口': [2152, 2424, 1348, 1303]}
df = pd.DataFrame(data)

# 设置城市列为索引
df.set_index('城市', inplace=True)

# 绘制柱状图
df.plot(kind='bar')

3. 산점도
산점도는 두 수치 변수 간의 상관 관계를 표시하는 데 자주 사용됩니다. Pandas는 산점도 그리기 기능도 제공합니다. 다음은 샘플 코드입니다.

import pandas as pd

# 创建一个DataFrame
data = {'体重': [65, 75, 58, 80, 68],
        '身高': [175, 180, 160, 190, 170]}
df = pd.DataFrame(data)

# 绘制散点图
df.plot.scatter(x='身高', y='体重')

2. 탐색적 분석
1. 기본 통계 분석
pandas는 평균, 중앙값, 최소값, 최대값 등 기본 통계 분석을 위한 일련의 방법을 제공합니다. 다음은 샘플 코드입니다.

import pandas as pd

# 创建一个DataFrame
data = {'姓名': ['张三', '李四', '王五', '赵六'],
        '年龄': [18, 20, 22, 24],
        '身高': [170, 175, 180, 185]}
df = pd.DataFrame(data)

# 输出年龄的平均值、中位数、最小值、最大值等统计量
print('平均年龄:', df['年龄'].mean())
print('年龄中位数:', df['年龄'].median())
print('最小年龄:', df['年龄'].min())
print('最大年龄:', df['年龄'].max())

2. 상관 분석
일반적인 방법에는 상관 계수와 공분산이 있습니다. 다음은 샘플 코드입니다.

import pandas as pd

# 创建一个DataFrame
data = {'体重': [65, 75, 58, 80, 68],
        '身高': [175, 180, 160, 190, 170]}
df = pd.DataFrame(data)

# 计算体重和身高的相关系数和协方差
print('相关系数:', df['体重'].corr(df['身高']))
print('协方差:', df['体重'].cov(df['身高']))

3. 결측값 처리
pandas는 isnull, fillna, dropna 등과 같은 결측값 처리를 위한 일련의 방법을 제공합니다. 다음은 샘플 코드입니다.

import pandas as pd
import numpy as np

# 创建一个包含缺失值的DataFrame
data = {'姓名': ['张三', '李四', np.nan, '赵六'],
        '年龄': [18, 20, np.nan, 24]}
df = pd.DataFrame(data)

# 判断哪些值是缺失值
print(df.isnull())

# 填充缺失值
df.fillna(0, inplace=True)

# 删除包含缺失值的行
df.dropna(inplace=True)

이 글에서는 데이터 시각화 및 탐색 분석을 위해 Pandas를 사용하는 방법을 소개하고 구체적인 코드 예제를 제공합니다. 이러한 기술을 익히면 보다 유연하게 데이터를 처리하고, 데이터를 분석하고, 의미 있는 결론을 도출할 수 있습니다.

위 내용은 Pandas를 사용한 데이터 시각화 및 탐색적 데이터 분석을 위한 팁과 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법Mar 05, 2025 am 09:58 AM

이 튜토리얼은 Python을 사용하여 Zipf의 법칙의 통계 개념을 처리하는 방법을 보여주고 법을 처리 할 때 Python의 읽기 및 대형 텍스트 파일을 정렬하는 효율성을 보여줍니다. ZIPF 분포라는 용어가 무엇을 의미하는지 궁금 할 것입니다. 이 용어를 이해하려면 먼저 Zipf의 법칙을 정의해야합니다. 걱정하지 마세요. 지침을 단순화하려고 노력할 것입니다. Zipf의 법칙 Zipf의 법칙은 단순히 : 큰 자연어 코퍼스에서 가장 자주 발생하는 단어는 두 번째 빈번한 단어, 세 번째 빈번한 단어보다 세 번, 네 번째 빈번한 단어 등 4 배나 자주 발생합니다. 예를 살펴 보겠습니다. 미국 영어로 브라운 코퍼스를 보면 가장 빈번한 단어는 "TH입니다.

HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?Mar 10, 2025 pm 06:54 PM

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

파이썬의 이미지 필터링파이썬의 이미지 필터링Mar 03, 2025 am 09:44 AM

시끄러운 이미지를 다루는 것은 특히 휴대폰 또는 저해상도 카메라 사진에서 일반적인 문제입니다. 이 튜토리얼은 OpenCV를 사용 하여이 문제를 해결하기 위해 Python의 이미지 필터링 기술을 탐구합니다. 이미지 필터링 : 강력한 도구 이미지 필터

Python을 사용하여 PDF 문서를 사용하는 방법Python을 사용하여 PDF 문서를 사용하는 방법Mar 02, 2025 am 09:54 AM

PDF 파일은 운영 체제, 읽기 장치 및 소프트웨어 전체에서 일관된 콘텐츠 및 레이아웃과 함께 크로스 플랫폼 호환성에 인기가 있습니다. 그러나 Python Processing Plain Text 파일과 달리 PDF 파일은 더 복잡한 구조를 가진 이진 파일이며 글꼴, 색상 및 이미지와 같은 요소를 포함합니다. 다행히도 Python의 외부 모듈로 PDF 파일을 처리하는 것은 어렵지 않습니다. 이 기사는 PYPDF2 모듈을 사용하여 PDF 파일을 열고 페이지를 인쇄하고 텍스트를 추출하는 방법을 보여줍니다. PDF 파일의 생성 및 편집에 대해서는 저의 다른 튜토리얼을 참조하십시오. 준비 핵심은 외부 모듈 PYPDF2를 사용하는 데 있습니다. 먼저 PIP를 사용하여 설치하십시오. PIP는 p입니다

Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법Mar 02, 2025 am 10:10 AM

이 튜토리얼은 Redis 캐싱을 활용하여 특히 Django 프레임 워크 내에서 Python 응용 프로그램의 성능을 향상시키는 방법을 보여줍니다. 우리는 Redis 설치, Django 구성 및 성능 비교를 다루어 Bene을 강조합니다.

Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?Mar 10, 2025 pm 06:52 PM

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

파이썬의 병렬 및 동시 프로그래밍 소개파이썬의 병렬 및 동시 프로그래밍 소개Mar 03, 2025 am 10:32 AM

데이터 과학 및 처리가 가장 좋아하는 Python은 고성능 컴퓨팅을위한 풍부한 생태계를 제공합니다. 그러나 Python의 병렬 프로그래밍은 독특한 과제를 제시합니다. 이 튜토리얼은 이러한 과제를 탐구하며 전 세계 해석에 중점을 둡니다.

파이썬에서 자신의 데이터 구조를 구현하는 방법파이썬에서 자신의 데이터 구조를 구현하는 방법Mar 03, 2025 am 09:28 AM

이 튜토리얼은 Python 3에서 사용자 정의 파이프 라인 데이터 구조를 작성하여 클래스 및 작업자 과부하를 활용하여 향상된 기능을 보여줍니다. 파이프 라인의 유연성은 일련의 기능을 데이터 세트, GE에 적용하는 능력에 있습니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

PhpStorm 맥 버전

PhpStorm 맥 버전

최신(2018.2.1) 전문 PHP 통합 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경