MySQLexplain
一、MySQL 查询优化器是如何工作的
MySQL 查询优化器有几个目标,但是其中最主要的目标是尽可能地使用索引,并且使用最严格的索引来消除尽可能多的数据行。最终目标是提交 SELECT 语句查找数据行,而不是排除数据行。优化器试图排除数据行的原因在于它排除数据行的速度越快,那么找到与条件匹配的数据行也就越快。如果能够首先进行最严格的测试,查询就可以执行地更快。
EXPLAIN 的每个输出行提供一个表的相关信息,并且每个行包括下面的列:
项 | 说明 |
id | MySQL Query Optimizer 选定的执行计划中查询的序列号。表示查询中执行 select 子句或操作表的顺序,id值越大优先级越高,越先被执行。id 相同,执行顺序由上至下。 |
select_type 查询类型 | 说明 |
SIMPLE | 简单的 select 查询,不使用 union 及子查询 |
PRIMARY | 最外层的 select 查询 |
UNION | UNION 中的第二个或随后的 select 查询,不 依赖于外部查询的结果集 |
DEPENDENT UNION | UNION 中的第二个或随后的 select 查询,依 赖于外部查询的结果集 |
SUBQUERY | 子查询中的第一个 select 查询,不依赖于外 部查询的结果集 |
DEPENDENT SUBQUERY | 子查询中的第一个 select 查询,依赖于外部 查询的结果集 |
DERIVED | 用于 from 子句里有子查询的情况。 MySQL 会 递归执行这些子查询, 把结果放在临时表里。 |
UNCACHEABLE SUBQUERY | 结果集不能被缓存的子查询,必须重新为外 层查询的每一行进行评估。 |
UNCACHEABLE UNION | UNION 中的第二个或随后的 select 查询,属 于不可缓存的子查询 |
项 | 说明 |
table | 输出行所引用的表 |
type 重要的项,显示连接使用的类型,按最 优到最差的类型排序 | 说明 |
system | 表仅有一行(=系统表)。这是 const 连接类型的一个特例。 |
const | const 用于用常数值比较 PRIMARY KEY 时。当 查询的表仅有一行时,使用 System。 |
eq_ref | const 用于用常数值比较 PRIMARY KEY 时。当 查询的表仅有一行时,使用 System。 |
ref | 连接不能基于关键字选择单个行,可能查找 到多个符合条件的行。 叫做 ref 是因为索引要 跟某个参考值相比较。这个参考值或者是一 个常数,或者是来自一个表里的多表查询的 结果值 |
ref_or_null | 如同 ref, 但是 MySQL 必须在初次查找的结果 里找出 null 条目,然后进行二次查找。 |
index_merge | 说明索引合并优化被使用了。 |
unique_subquery | 在某些 IN 查询中使用此种类型,而不是常规的 ref:value IN (SELECT primary_key FROM single_table WHERE some_expr) |
index_subquery | 在 某 些 IN 查 询 中 使 用 此 种 类 型 , 与 unique_subquery 类似,但是查询的是非唯一 性索引: value IN (SELECT key_column FROM single_table WHERE some_expr) |
range | 只检索给定范围的行,使用一个索引来选择 行。key 列显示使用了哪个索引。当使用=、 、>、>=、、BETWEEN 或者 IN 操作符,用常量比较关键字列时,可 以使用 range。 |
index | 全表扫描,只是扫描表的时候按照索引次序 进行而不是行。主要优点就是避免了排序, 但是开销仍然非常大。 |
all | 最坏的情况,从头到尾全表扫描。 |
项 | 说明 |
possible_keys | 指出 MySQL 能在该表中使用哪些索引有助于 查询。如果为空,说明没有可用的索引。 |
项 | 说明 |
key | MySQL 实际从 possible_key 选择使用的索引。 如果为 NULL,则没有使用索引。很少的情况 下,MYSQL 会选择优化不足的索引。这种情 况下,可以在 SELECT 语句中使用 USE INDEX (indexname)来强制使用一个索引或者用 IGNORE INDEX(indexname)来强制 MYSQL 忽略索引 |
项 | 说明 |
key_len | 使用的索引的长度。在不损失精确性的情况 下,长度越短越好。 |
项 | 说明 |
ref | 显示索引的哪一列被使用了 |
项 | 说明 |
rows | MYSQL 认为必须检查的用来返回请求数据的行数 |
项 | 说明 |
rows | MYSQL 认为必须检查的用来返回请求数据的行数 |
extra 中出现以下 2 项意味着 MYSQL 根本不能使用索引,效率会受到重大影响。应尽可能对此进行优化。
extra 项 | 说明 |
Using filesort | 表示 MySQL 会对结果使用一个外部索引排序,而不是从表里按索引次序读到相关内容。可能在内存或者磁盘上进行排序。MySQL 中无法利用索引完成的排序操作称为“文件排序” |
Using temporary | 表示 MySQL 在对查询结果排序时使用临时表。常见于排序 order by 和分组查询 group by。 |
下面来举一个例子来说明下 explain 的用法。
先来一张表:
CREATE TABLE IF NOT EXISTS `article` (`id` int(10) unsigned NOT NULL AUTO_INCREMENT,`author_id` int(10) unsigned NOT NULL,`category_id` int(10) unsigned NOT NULL,`views` int(10) unsigned NOT NULL,`comments` int(10) unsigned NOT NULL,`title` varbinary(255) NOT NULL,`content` text NOT NULL,PRIMARY KEY (`id`));
再插几条数据:
INSERT INTO `article`(`author_id`, `category_id`, `views`, `comments`, `title`, `content`) VALUES(1, 1, 1, 1, '1', '1'),(2, 2, 2, 2, '2', '2'),(1, 1, 3, 3, '3', '3');
需求:
查询 category_id 为 1 且 comments 大于 1 的情况下,views 最多的 article_id。
先查查试试看:
EXPLAINSELECT author_idFROM `article`WHERE category_id = 1 AND comments > 1ORDER BY views DESCLIMIT 1/G
看看部分输出结果:
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: article type: ALLpossible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 3 Extra: Using where; Using filesort1 row in set (0.00 sec)
很显然,type 是 ALL,即最坏的情况。Extra 里还出现了 Using filesort,也是最坏的情况。优化是必须的。
嗯,那么最简单的解决方案就是加索引了。好,我们来试一试。查询的条件里即 where 之后共使用了 category_id,comments,views 三个字段。那么来一个联合索引是最简单的了。
ALTER TABLE `article` ADD INDEX x ( `category_id` , `comments`, `views` );
结果有了一定好转,但仍然很糟糕:
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: article type: rangepossible_keys: x key: x key_len: 8 ref: NULL rows: 1 Extra: Using where; Using filesort1 row in set (0.00 sec)
type 变成了 range,这是可以忍受的。但是 extra 里使用 Using filesort 仍是无法接受的。但是我们已经建立了索引,为啥没用呢?这是因为按照 BTree 索引的工作原理,先排序 category_id,如果遇到相同的 category_id 则再排序 comments,如果遇到相同的 comments 则再排序 views。当 comments 字段在联合索引里处于中间位置时,因comments > 1 条件是一个范围值(所谓 range),MySQL 无法利用索引再对后面的 views 部分进行检索,即 range 类型查询字段后面的索引无效。
那么我们需要抛弃 comments,删除旧索引:
DROP INDEX x ON article;
然后建立新索引:
ALTER TABLE `article` ADD INDEX y ( `category_id` , `views` ) ;
接着再运行查询:
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: article type: refpossible_keys: y key: y key_len: 4 ref: const rows: 1 Extra: Using where1 row in set (0.00 sec)
可以看到,type 变为了 ref,Extra 中的 Using filesort 也消失了,结果非常理想。
再来看一个多表查询的例子。
首先定义 3个表 class 和 room。
CREATE TABLE IF NOT EXISTS `class` (`id` int(10) unsigned NOT NULL AUTO_INCREMENT,`card` int(10) unsigned NOT NULL,PRIMARY KEY (`id`));CREATE TABLE IF NOT EXISTS `book` (`bookid` int(10) unsigned NOT NULL AUTO_INCREMENT,`card` int(10) unsigned NOT NULL,PRIMARY KEY (`bookid`));CREATE TABLE IF NOT EXISTS `phone` (`phoneid` int(10) unsigned NOT NULL AUTO_INCREMENT,`card` int(10) unsigned NOT NULL,PRIMARY KEY (`phoneid`)) engine = innodb;
然后再分别插入大量数据。插入数据的php脚本:
<?php$link = mysql_connect("localhost","root","870516");mysql_select_db("test",$link);for($i=0;$i<10000;$i++){ $j = rand(1,20); $sql = " insert into class(card) values({$j})"; mysql_query($sql);}for($i=0;$i<10000;$i++){ $j = rand(1,20); $sql = " insert into book(card) values({$j})"; mysql_query($sql);}for($i=0;$i<10000;$i++){ $j = rand(1,20); $sql = " insert into phone(card) values({$j})"; mysql_query($sql);}mysql_query("COMMIT");?>
然后来看一个左连接查询:
explain select * from class left join book on class.card = book.card/G
分析结果是:
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: class type: ALLpossible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: *************************** 2. row *************************** id: 1 select_type: SIMPLE table: book type: ALLpossible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: 2 rows in set (0.00 sec)
显然第二个 ALL 是需要我们进行优化的。
建立个索引试试看:
ALTER TABLE `book` ADD INDEX y ( `card`);
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: class type: ALLpossible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: *************************** 2. row *************************** id: 1 select_type: SIMPLE table: book type: refpossible_keys: y key: y key_len: 4 ref: test.class.card rows: 1000 Extra: 2 rows in set (0.00 sec)
可以看到第二行的 type 变为了 ref,rows 也变成了 1741*18,优化比较明显。这是由左连接特性决定的。LEFT JOIN 条件用于确定如何从右表搜索行,左边一定都有,所以右边是我们的关键点,一定需要建立索引。
删除旧索引:
DROP INDEX y ON book;
建立新索引。
ALTER TABLE `class` ADD INDEX x ( `card`);
结果
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: class type: ALLpossible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: *************************** 2. row *************************** id: 1 select_type: SIMPLE table: book type: ALLpossible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: 2 rows in set (0.00 sec)
基本无变化。
然后来看一个右连接查询:
explain select * from class right join book on class.card = book.card;
分析结果是:
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: book type: ALLpossible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: *************************** 2. row *************************** id: 1 select_type: SIMPLE table: class type: refpossible_keys: x key: x key_len: 4 ref: test.book.card rows: 1000 Extra: 2 rows in set (0.00 sec)
优化较明显。这是因为 RIGHT JOIN 条件用于确定如何从左表搜索行,右边一定都有,所以左边是我们的关键点,一定需要建立索引。
删除旧索引:
DROP INDEX x ON class;
建立新索引。
ALTER TABLE `book` ADD INDEX y ( `card`);
结果
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: class type: ALLpossible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: *************************** 2. row *************************** id: 1 select_type: SIMPLE table: book type: ALLpossible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: 2 rows in set (0.00 sec)
基本无变化。 最后来看看 inner join 的情况:
explain select * from class inner join book on class.card = book.card;
结果:
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: book type: ALLpossible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: *************************** 2. row *************************** id: 1 select_type: SIMPLE table: class type: refpossible_keys: x key: x key_len: 4 ref: test.book.card rows: 1000 Extra: 2 rows in set (0.00 sec)
删除旧索引:
DROP INDEX y ON book;
结果
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: class type: ALLpossible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: *************************** 2. row *************************** id: 1 select_type: SIMPLE table: book type: ALLpossible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: 2 rows in set (0.00 sec)
建立新索引。
ALTER TABLE `class` ADD INDEX x ( `card`);
结果
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: class type: ALLpossible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: *************************** 2. row *************************** id: 1 select_type: SIMPLE table: book type: ALLpossible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: 2 rows in set (0.00 sec)
综上所述,inner join 和 left join 差不多,都需要优化右表。而 right join 需要优化左表。
我们再来看看三表查询的例子
添加一个新索引:
ALTER TABLE `phone` ADD INDEX z ( `card`);ALTER TABLE `book` ADD INDEX y ( `card`);
explain select * from class left join book on class.card=book.card left join phone on book.card = phone.card;
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: class type: ALLpossible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: *************************** 2. row *************************** id: 1 select_type: SIMPLE table: book type: refpossible_keys: y key: y key_len: 4 ref: test.class.card rows: 1000 Extra: *************************** 3. row *************************** id: 1 select_type: SIMPLE table: phone type: refpossible_keys: z key: z key_len: 4 ref: test.book.card rows: 260 Extra: Using index3 rows in set (0.00 sec)
后 2 行的 type 都是 ref 且总 rows 优化很好,效果不错。
MySql 中的 explain 语法可以帮助我们改写查询,优化表的结构和索引的设置,从而最大地提高查询效率。当然,在大规模数据量时,索引的建立和维护的代价也是很高的,往往需要较长的时间和较大的空间,如果在不同的列组合上建立索引,空间的开销会更大。因此索引最好设置在需要经常查询的字段中。

MySQL과 Sqlite의 주요 차이점은 설계 개념 및 사용 시나리오입니다. 1. MySQL은 대규모 응용 프로그램 및 엔터프라이즈 수준의 솔루션에 적합하며 고성능 및 동시성을 지원합니다. 2. SQLITE는 모바일 애플리케이션 및 데스크탑 소프트웨어에 적합하며 가볍고 내부질이 쉽습니다.

MySQL의 인덱스는 데이터 검색 속도를 높이는 데 사용되는 데이터베이스 테이블에서 하나 이상의 열의 주문 구조입니다. 1) 인덱스는 스캔 한 데이터의 양을 줄임으로써 쿼리 속도를 향상시킵니다. 2) B-Tree Index는 균형 잡힌 트리 구조를 사용하여 범위 쿼리 및 정렬에 적합합니다. 3) CreateIndex 문을 사용하여 CreateIndexIdx_customer_idonorders (customer_id)와 같은 인덱스를 작성하십시오. 4) Composite Indexes는 CreateIndexIdx_customer_orderOders (Customer_id, Order_Date)와 같은 다중 열 쿼리를 최적화 할 수 있습니다. 5) 설명을 사용하여 쿼리 계획을 분석하고 피하십시오

MySQL에서 트랜잭션을 사용하면 데이터 일관성이 보장됩니다. 1) STARTTRANSACTION을 통해 트랜잭션을 시작한 다음 SQL 작업을 실행하고 커밋 또는 롤백으로 제출하십시오. 2) SavePoint를 사용하여 부분 롤백을 허용하는 저장 지점을 설정하십시오. 3) 성능 최적화 제안에는 트랜잭션 시간 단축, 대규모 쿼리 방지 및 격리 수준을 합리적으로 사용하는 것이 포함됩니다.

MySQL 대신 PostgreSQL을 선택한 시나리오에는 다음이 포함됩니다. 1) 복잡한 쿼리 및 고급 SQL 기능, 2) 엄격한 데이터 무결성 및 산 준수, 3) 고급 공간 기능이 필요하며 4) 큰 데이터 세트를 처리 할 때 고성능이 필요합니다. PostgreSQL은 이러한 측면에서 잘 수행되며 복잡한 데이터 처리 및 높은 데이터 무결성이 필요한 프로젝트에 적합합니다.

MySQL 데이터베이스의 보안은 다음 조치를 통해 달성 할 수 있습니다. 1. 사용자 권한 관리 : CreateUser 및 Grant 명령을 통한 액세스 권한을 엄격히 제어합니다. 2. 암호화 된 전송 : 데이터 전송 보안을 보장하기 위해 SSL/TLS를 구성합니다. 3. 데이터베이스 백업 및 복구 : MySQLDump 또는 MySQLPump를 사용하여 정기적으로 백업 데이터를 사용하십시오. 4. 고급 보안 정책 : 방화벽을 사용하여 액세스를 제한하고 감사 로깅 작업을 가능하게합니다. 5. 성능 최적화 및 모범 사례 : 인덱싱 및 쿼리 최적화 및 정기 유지 보수를 통한 안전 및 성능을 모두 고려하십시오.

MySQL 성능을 효과적으로 모니터링하는 방법은 무엇입니까? Mysqladmin, Showglobalstatus, Perconamonitoring and Management (PMM) 및 MySQL Enterprisemonitor와 같은 도구를 사용하십시오. 1. MySQLADMIN을 사용하여 연결 수를보십시오. 2. showglobalstatus를 사용하여 쿼리 번호를보십시오. 3.pmm은 자세한 성능 데이터 및 그래픽 인터페이스를 제공합니다. 4. MySQLENTERPRISOMITOR는 풍부한 모니터링 기능 및 경보 메커니즘을 제공합니다.

MySQL과 SqlServer의 차이점은 1) MySQL은 오픈 소스이며 웹 및 임베디드 시스템에 적합합니다. 2) SQLServer는 Microsoft의 상용 제품이며 엔터프라이즈 수준 애플리케이션에 적합합니다. 스토리지 엔진의 두 가지, 성능 최적화 및 응용 시나리오에는 상당한 차이가 있습니다. 선택할 때는 프로젝트 규모와 향후 확장 성을 고려해야합니다.

고 가용성, 고급 보안 및 우수한 통합이 필요한 엔터프라이즈 수준의 응용 프로그램 시나리오에서는 MySQL 대신 SQLServer를 선택해야합니다. 1) SQLServer는 고 가용성 및 고급 보안과 같은 엔터프라이즈 수준의 기능을 제공합니다. 2) VisualStudio 및 Powerbi와 같은 Microsoft Ecosystems와 밀접하게 통합되어 있습니다. 3) SQLSERVER는 성능 최적화에서 우수한 성능을 발휘하며 메모리 최적화 된 테이블 및 열 스토리지 인덱스를 지원합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.
