찾다
기술 주변기기일체 포함문서 분석을 위해 LangChain 및 OpenAI API를 사용하는 방법

번역자가 다시 작성해야 하는 콘텐츠는 다음과 같습니다. |다시 작성해야 하는 콘텐츠는: Bugatti

리뷰어가 다시 작성해야 하는 콘텐츠는 다음과 같습니다. |필요한 콘텐츠는 다음과 같습니다. 다시 작성하는 방법은 다음과 같습니다. Chonglou

문서와 데이터에서 insights를 추출하는 것은 you정보에 입각한 결정을 내리는 데 매우 중요합니다. 그러나 민감한 정보를 다루는 경우 개인정보 문제가 발생할 수 있습니다. LangChainOpenAI를 함께 사용하려면 API를 다시 작성해야 합니다. 로컬 문서를 인터넷에 업로드하지 않고도 분석할 수 있습니다.

이 작업은 데이터를 로컬에 유지하고, 분석을 위해 임베딩 및 벡터화를 사용하고, 환경에서 프로세스를 실행하여 이를 수행합니다. OpenAI는 모델 교육이나 서비스 개선을 위해 고객이 API를 통해 제출한 데이터를 사용하지 않습니다. Build

Environment

Python

가상 환경을 만듭니다. 이렇게 하면 라이브러리 버전 충돌이 발생하지 않습니다. 그런 다음 다음 터미널 명령을 실행하여 필요한 라이브러리를 설치하십시오.

pip需要改写的内容是:install需要改写的内容是:langchain需要改写的内容是:openai需要改写的内容是:tiktoken需要改写的内容是:faiss-cpu需要改写的内容是:pypdf
각 라이브러리를

사용하는 방법은 다음과 같습니다.

:

LangChain
  • : 이를 사용하여 생성하고 관리합니다. 텍스트 처리 및 언어 응용 프로그램 분석 체인. 문서 로딩, 텍스트 분할, 삽입 및 볼륨 저장을 위한 모듈을 제공합니다. OpenAI:
  • 이를 사용하여 쿼리, 를 실행하고 언어 모델에서 결과를 얻습니다. tiktoken:
  • 이를 사용하여 주어진 텍스트에서 토큰( 텍스트 단위 ) 의 수를 계산합니다. 사용하는 토큰의 수에 따라 을 청구하는 OpenAI와 상호 작용할 때 token 수를 추적하기 위해 다시 작성해야 하는 것은 API 입니다. FAISS: 이를 사용하여 벡터 저장소를 만들고 관리하므로 임베딩을 기반으로 유사한 벡터를 빠르게 검색할 수 있습니다.
  • PyPDF: 이 라이브러리는
  • PDF
  • 에서 텍스트를 추출합니다. 이는 파일을 PDF 로드하고 추가 처리를 위해 텍스트 , 추출하는 데 도움이 됩니다. 모든 라이브러리를 설치한 후 환경 이 이제 준비 준비
됩니다.

Get OpenAI 다시 작성해야 할 것은: API

OpenAI에 요청할 때 다시 작성해야 할 것은: API 입니다. 요청의 일부로

API

Key를 추가하세요. 키를 사용하면 API제공자가 해당 요청이 합법적인 소스에서 왔는지, 사용자가 해당 기능에 액세스하는 데 필요한 권한을 가지고 있는지 확인할 수 있습니다. OpenAI를 얻기 위해 다시 작성해야 하는 것은 API 키, OpenAI 플랫폼을 입력하는 것입니다. 그런 다음 오른쪽 상단의 계정

프로필 에서

"使用LangChain和OpenAI API进行文档分析的方法

View

APIKey"을 클릭하면 이 나타납니다. API비밀 핵심 페이지. "새 키 만들기" 버튼을 클릭하세요. 키 이름을

使用LangChain和OpenAI API进行文档分析的方法

지정하고 "

Create New Key"을 클릭하세요. OpenAIAPI키를 생성하며, 이 키를 복사하여 안전한 곳에 보관해야 합니다. 보안상의 이유로 OpenAI 계정을 통해 다시 볼 수 없습니다. 키를 분실한 경우 새 키를 생성해야 합니다.

导入所需的库

为了能够使用安装在虚拟环境中的库,您需要导入它们。

from需要改写的内容是:langchain.document_loaders需要改写的内容是:import需要改写的内容是:PyPDFLoader,需要改写的内容是:TextLoaderfrom需要改写的内容是:langchain.text_splitter需要改写的内容是:import需要改写的内容是:CharacterTextSplitterfrom需要改写的内容是:langchain.embeddings.openai需要改写的内容是:import需要改写的内容是:OpenAIEmbeddingsfrom需要改写的内容是:langchain.vectorstores需要改写的内容是:import需要改写的内容是:FAISSfrom需要改写的内容是:langchain.chains需要改写的内容是:import需要改写的内容是:RetrievalQAfrom需要改写的内容是:langchain.llms需要改写的内容是:import需要改写的内容是:OpenAI

注意,您从LangChain导入了依赖,这让您可以使用LangChain框架的特定功能

加载用于分析的文档

先创建一个含API密钥的变量。稍后,您将在代码中使用该变量用于身份验证。

#需要改写的内容是:Hardcoded需要改写的内容是:API需要改写的内容是:keyopenai_api_key需要改写的内容是:=需要改写的内容是:"Your需要改写的内容是:API需要改写的内容是:key"

如果您打算与第三方共享您的代码,不建议对API密钥进行硬编码。对于打算分发的生产级代码,则改而使用环境变量。

接下来,创建一个加载文档的函数。该函数应该加载PDF或文本文件。如果文档既不是PDF文件,也不是文本文件,该函数会抛出值错误

def需要改写的内容是:load_document(filename):if需要改写的内容是:filename.endswith(".pdf"):需要改写的内容是:loader需要改写的内容是:=需要改写的内容是:PyPDFLoader(filename)需要改写的内容是:documents需要改写的内容是:=需要改写的内容是:loader.load()需要改写的内容是:elif需要改写的内容是:filename.endswith(".txt"):需要改写的内容是:loader需要改写的内容是:=需要改写的内容是:TextLoader(filename)需要改写的内容是:documents需要改写的内容是:=需要改写的内容是:loader.load()需要改写的内容是:else:需要改写的内容是:raise需要改写的内容是:ValueError("Invalid需要改写的内容是:file需要改写的内容是:type")

加载文档后,创建一个CharacterTextSplitter。该分割器将基于字符将加载的文档分隔成更小的块。

需要改写的内容是:

text_splitter需要改写的内容是:=需要改写的内容是:CharacterTextSplitter(chunk_size=1000,需要改写的内容是:需要改写的内容是:chunk_overlap=30,需要改写的内容是:separator="\n")需要改写的内容是:return需要改写的内容是:text_splitter.split_documents(documents=documents)

分割文档可确保块的大小易于管理,仍与一些重叠的上下文相连接。这对于文本分析和信息检索之类的任务非常有用。

查询文档

您需要一种方法来查询上传的文档,以便从中获得洞察力。为此,创建一个以查询字符串和检索器作为输入的函数。然后,它使用检索器和OpenAI语言模型的实例创建一个RetrievalQA实例。

def需要改写的内容是:query_pdf(query,需要改写的内容是:retriever):qa需要改写的内容是:=需要改写的内容是:RetrievalQA.from_chain_type(llm=OpenAI(openai_api_key=openai_api_key),需要改写的内容是:chain_type="stuff",需要改写的内容是:retriever=retriever)result需要改写的内容是:=需要改写的内容是:qa.run(query)需要改写的内容是:print(result)

函数使用创建的QA实例来运行查询并输出结果。

创建函数

函数将控制整个程序流。它将接受用户输入的文档文件名并加载该文档。然后为文本嵌入创建OpenAIEmbeddings实例,并基于加载的文档和文本嵌入构造一个量存储。将该向量存储保存到本地文件。

接下来,从本地文件加载持久的量存储。然后输入一个循环,用户可以在其中输入查询。主函数将这些查询持久化向量存储的检索器一起传递给query_pdf函数。循环将继续,直到用户输入exit

def需要改写的内容是:main():需要改写的内容是:filename需要改写的内容是:=需要改写的内容是:input("Enter需要改写的内容是:the需要改写的内容是:name需要改写的内容是:of需要改写的内容是:the需要改写的内容是:document需要改写的内容是:(.pdf需要改写的内容是:or需要改写的内容是:.txt):\n")docs需要改写的内容是:=需要改写的内容是:load_document(filename)embeddings需要改写的内容是:=需要改写的内容是:OpenAIEmbeddings(openai_api_key=openai_api_key)vectorstore需要改写的内容是:=需要改写的内容是:FAISS.from_documents(docs,需要改写的内容是:embeddings)需要改写的内容是:vectorstore.save_local("faiss_index_constitution")persisted_vectorstore需要改写的内容是:=需要改写的内容是:FAISS.load_local("faiss_index_constitution",需要改写的内容是:embeddings)query需要改写的内容是:=需要改写的内容是:input("Type需要改写的内容是:in需要改写的内容是:your需要改写的内容是:query需要改写的内容是:(type需要改写的内容是:'exit'需要改写的内容是:to需要改写的内容是:quit):\n")while需要改写的内容是:query需要改写的内容是:!=需要改写的内容是:"exit":query_pdf(query,需要改写的内容是:persisted_vectorstore.as_retriever())query需要改写的内容是:=需要改写的内容是:input("Type需要改写的内容是:in需要改写的内容是:your需要改写的内容是:query需要改写的内容是:(type需要改写的内容是:'exit'需要改写的内容是:to需要改写的内容是:quit):\n")

嵌入捕获词之间的语义关系。向量是一种可以表示一段文本的形式。

这段代码使用OpenAIEmbeddings生成的嵌入将文档中的文本数据转换向量。然后使用FAISS对这些向量进行索引,以便效地检索和比较相似的向量。这便于对上传的文档进行分析。

最后,如果用户独立运行程序,使用__name__需要改写的内容是:==需要改写的内容是:"__main__"构造函数来调用函数

if需要改写的内容是:__name__需要改写的内容是:==需要改写的内容是:"__main__":需要改写的内容是:main()

这个应用程序是一个命令行应用程序。作为一个扩展,可以使用Streamlit为该应用程序添加Web界面。

执行文件分析

要执行文档分析,将所要分析的文档存储在项目所在的同一个文件夹中,然后运行该程序。它将询问要分析的文档的名称。输入全名,然后输入查询,以便程序分析

以下截图展示了对PDF进行分析的结果

使用LangChain和OpenAI API进行文档分析的方法

아래 출력은 소스 코드와 가 포함된 텍스트 파일을 분석한 결과를 보여줍니다.

使用LangChain和OpenAI API进行文档分析的方法

분석하려는 파일이 PDF 또는 텍스트 형식인지 확인하세요. 문서 다른 형식 인 경우 온라인 도구를 사용하여 해당 문서를 PDF 형식 으로 변환할 수 있습니다. 전체 소스 코드는 GitHub 코드 저장소에서 확인할 수 있습니다: https://github.com/makeuseofcode/Document-analytics-using-LangChain-and-OpenAI

원제: How need to 다시 작성해야 할 내용은 다음과 같습니다. to 다시 작성해야 할 내용은 다음과 같습니다. 분석 다시 작성해야 할 내용은 다음과 같습니다. 문서 다시 작성해야 할 내용은 다음과 같습니다. With 다시 작성해야 할 내용은 다음과 같습니다. : LangChain 다시 작성해야 하는 콘텐츠는 다음과 같습니다. 다시 작성해야 하는 콘텐츠는 다음과 같습니다. 다시 작성해야 하는 콘텐츠는 다음과 같습니다. the 콘텐츠는: OpenAI 다시 작성해야 하는 콘텐츠는: API , 작성자: Denis 다시 작성해야 하는 콘텐츠는 다음과 같습니다. Kuria

다시 작성해야 하는 콘텐츠는 다음과 같습니다.

위 내용은 문서 분석을 위해 LangChain 및 OpenAI API를 사용하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 51CTO.COM에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
得益于OpenAI技术,微软必应的搜索流量超过谷歌得益于OpenAI技术,微软必应的搜索流量超过谷歌Mar 31, 2023 pm 10:38 PM

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。​​​​截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

ChatGPT出现隐私漏洞,可能泄露用户和聊天机器人的对话标题ChatGPT出现隐私漏洞,可能泄露用户和聊天机器人的对话标题Apr 07, 2023 pm 11:21 PM

Reddit和Twitter上的用户从3月20日开始报告了ChatGPT的一个漏洞,并发布了一些屏幕截图,显示他们的ChatGPT网页历史记录中包含他们不熟悉的对话标题。虽然以这种方式似乎无法访问共享聊天内容,但OpenAI公司在关闭该漏洞时完全删除了聊天历史记录。根据行业媒体的报道,ChatGPT在当天还出现了重大中断,那些可以访问的用户注意到提供了不一致的服务。OpenAI公司在其状态页面上记录了中断情况,并在最初报告的几个小时内恢复了服务。OpenAI公司的首席执行官 Sam Altman

LLM之战,谷歌输了!越来越多顶尖研究员跳槽OpenAILLM之战,谷歌输了!越来越多顶尖研究员跳槽OpenAIApr 07, 2023 pm 05:48 PM

​前几天,谷歌差点遭遇一场公关危机,Bert一作、已跳槽OpenAI的前员工Jacob Devlin曝出,Bard竟是用ChatGPT的数据训练的。随后,谷歌火速否认。而这场争议,也牵出了一场大讨论:为什么越来越多Google顶尖研究员跳槽OpenAI?这场LLM战役它还能打赢吗?知友回复莱斯大学博士、知友「一堆废纸」表示,其实谷歌和OpenAI的差距,是数据的差距。「OpenAI对LLM有强大的执念,这是Google这类公司完全比不上的。当然人的差距只是一个方面,数据的差距以及对待数据的态度才

美媒担忧:ChatGPT们生成的摘要足够好,读者不来看新闻怎么办美媒担忧:ChatGPT们生成的摘要足够好,读者不来看新闻怎么办Apr 08, 2023 pm 11:31 PM

据报道,美国新闻行业正将AI聊天机器人​视为一种新的生存威胁。他们担心人们会认为聊天机器人提供的文章摘要已经足够好,从而不再访问他们的网站,致使读者和广告商流失。然而,也有媒体高管认为,尽管存在潜在的威胁,但也有机会。他们正试图在行业变革中领先一步,以适应读者获取信息方式的演变。以下是翻译内容当你向微软Bing聊天机器人询问美国前总统唐纳德·特朗普(Donald Trump)是否被起诉时,它的回答会让传媒高管们感到害怕。机器人给出的三句摘要似乎很有用,它不仅提供了CNN、华盛顿邮报等新闻媒体的链

CIO分享:企业IT应谨慎使用生成式AI向前发展CIO分享:企业IT应谨慎使用生成式AI向前发展Apr 11, 2023 pm 03:49 PM

Vince Kellen是美国加州大学圣地亚哥分校(UCSD)的首席信息官,他深知ChatGPT、DALL-E和其他生成式AI技术有据可查的局限性:生成的答案可能并不真实,生成的图像也可能缺乏完整性,输出可能存在偏差。但无论如何他都在向前推进,他表示,员工们已经在使用ChatGPT来编写代码和工作内容描述了。OpenAI的文本生成技术ChatGPT以及图像生成技术DALL-E在一系列吸引了公众想象力的大型语言模型(也称为生成语言模型或者生成式AI)中是最突出的,这些模型响应书面请求以生成从文本文

ChatGPT技术国产化尝试ChatGPT技术国产化尝试Apr 08, 2023 am 11:31 AM

本次分享题目为 ChatGPT 技术、国产化尝试和开源模型。分享包含三大部分的内容,第一部分总体介绍 ChatGPT 相关的技术:ChatGPT 技术的演进、目前存在什么样的问题、ChatGPT 技术学习的三个阶段、数据组织和效果评估;第二部分分享我们在 ChatGPT 技术国产化方面进行的尝试,包含实验过程中我们遇到的问题、进行的思考以及模型的效果和应用;第三部分介绍我们已经发布的中文开源大模型,使用自有数据训练出本地模型如何进行操作,在实验过程中可能遇到的问题,和开源的先进模型相比存在的差距

用ChatGPT秒建大模型!OpenAI全新插件杀疯了,接入代码解释器一键get用ChatGPT秒建大模型!OpenAI全新插件杀疯了,接入代码解释器一键getApr 04, 2023 am 11:30 AM

ChatGPT可以联网后,OpenAI还火速介绍了一款代码生成器,在这个插件的加持下,ChatGPT甚至可以自己生成机器学习模型了。 ​上周五,OpenAI刚刚宣布了惊爆的消息,ChatGPT可以联网,接入第三方插件了!而除了第三方插件,OpenAI也介绍了一款自家的插件「代码解释器」,并给出了几个特别的用例:解决定量和定性的数学问题;进行数据分析和可视化;快速转换文件格式。此外,Greg Brockman演示了ChatGPT还可以对上传视频文件进行处理。而一位叫Andrew Mayne的畅销作

GPT-4掀起新一轮AI风暴,被围堵的文心一言能否一战?GPT-4掀起新一轮AI风暴,被围堵的文心一言能否一战?Apr 11, 2023 pm 05:43 PM

将文心一言发布时间定在3月16日的百度,没能预料到会遭到来自OpenAI、谷歌、微软的轮番轰炸:先是3月15日凌晨,OpenAI发布大型多模态Transformer模型GPT-4;紧接着,宣布开放大规模语言模型PaLM的API接口,并推出面向开发者的工具MakerSuite;文心一言发布之后,巨头们也并没有歇着,3月16日晚间,微软更是发布由AI驱动的办公神器Microsoft 365 Copilot,号称让Word、PPT、Excel、OutLook、协同办公软件的生产力都飙增。文心一言对标C

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

맨티스BT

맨티스BT

Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

Dreamweaver Mac版

Dreamweaver Mac版

시각적 웹 개발 도구