ChatGPT Java: 기사에서 주요 정보를 자동으로 요약하고 추출하는 방법
ChatGPT Java: 기사에서 자동 요약 및 핵심 정보 추출을 구현하는 방법, 구체적인 코드 예제가 필요합니다.
요약 및 핵심 정보 추출은 정보 검색 및 텍스트 처리에 있어 매우 중요한 작업입니다. Java로 자동 요약을 구현하고 기사의 주요 정보를 추출하려면 자연어 처리(NLP) 라이브러리 및 관련 알고리즘을 사용할 수 있습니다. 이 기사에서는 Lucene 및 Stanford CoreNLP를 사용하여 이러한 기능을 구현하는 방법을 소개하고 구체적인 코드 예제를 제공합니다.
1. 자동 요약
자동 요약은 텍스트에서 중요한 문장이나 문구를 추출하여 텍스트의 간결한 요약을 생성합니다. Java에서는 Lucene 라이브러리를 사용하여 자동 요약 기능을 구현할 수 있습니다. 다음은 간단한 샘플 코드입니다.
import org.apache.lucene.analysis.Analyzer; import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.document.Document; import org.apache.lucene.document.Field; import org.apache.lucene.document.TextField; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.index.IndexWriterConfig; import org.apache.lucene.search.IndexSearcher; import org.apache.lucene.search.ScoreDoc; import org.apache.lucene.search.TopDocs; import org.apache.lucene.store.Directory; import org.apache.lucene.store.RAMDirectory; public class Summarizer { public static String summarize(String text, int numSentences) throws Exception { // 创建索引 Directory directory = new RAMDirectory(); Analyzer analyzer = new StandardAnalyzer(); IndexWriterConfig config = new IndexWriterConfig(analyzer); IndexWriter writer = new IndexWriter(directory, config); // 创建文档 Document doc = new Document(); doc.add(new TextField("text", text, Field.Store.YES)); writer.addDocument(doc); writer.close(); // 搜索并获取摘要 IndexSearcher searcher = new IndexSearcher(directory); TopDocs topDocs = searcher.search(query, numSentences); StringBuilder summary = new StringBuilder(); for (ScoreDoc scoreDoc : topDocs.scoreDocs) { Document summaryDoc = searcher.doc(scoreDoc.doc); summary.append(summaryDoc.get("text")).append(" "); } searcher.getIndexReader().close(); directory.close(); return summary.toString(); } }
위 코드에서는 Lucene 라이브러리를 사용하여 인메모리 인덱스를 생성하고 결과를 검색한 후 관련 문장을 요약으로 추출합니다.
2. 기사의 핵심정보 추출
핵심정보 추출이란 기사에서 가장 대표적이고 중요한 키워드나 문구를 추출하는 것을 말합니다. Java에서는 Stanford CoreNLP 라이브러리를 사용하여 이 기능을 구현할 수 있습니다. 다음은 간단한 샘플 코드입니다.
import edu.stanford.nlp.simple.*; public class KeywordExtractor { public static List<String> extractKeywords(String text, int numKeywords) { List<String> keywords = new ArrayList<>(); Document document = new Document(text); // 提取名词关键词 for (Sentence sentence : document.sentences()) { for (String word : sentence.words()) { if (sentence.posTag(word).startsWith("NN")) { keywords.add(word); } } } // 统计关键词频率 Map<String, Integer> freqMap = new HashMap<>(); for (String keyword : keywords) { freqMap.put(keyword, freqMap.getOrDefault(keyword, 0) + 1); } // 按照频率排序 List<Map.Entry<String, Integer>> sortedList = new ArrayList<>(freqMap.entrySet()); sortedList.sort(Map.Entry.comparingByValue(Comparator.reverseOrder())); // 返回前 numKeywords 个关键词 List<String> topKeywords = new ArrayList<>(); for (int i = 0; i < Math.min(numKeywords, sortedList.size()); i++) { topKeywords.add(sortedList.get(i).getKey()); } return topKeywords; } }
위 코드에서는 Stanford CoreNLP 라이브러리를 사용하여 텍스트 내 명사 키워드를 추출하고, 빈도 통계 및 순위를 사용하여 가장 대표적인 키워드를 얻습니다.
3. 요약
이 기사에서는 Java를 사용하여 기사의 주요 정보를 자동으로 요약하고 추출하는 방법을 소개합니다. Lucene 및 Stanford CoreNLP 라이브러리와 관련 알고리즘을 사용하면 이러한 기능을 보다 쉽게 구현할 수 있습니다. 이 코드 예제가 이러한 작업을 더 잘 이해하고 연습하는 데 도움이 되기를 바랍니다.
위 내용은 ChatGPT Java: 기사에서 주요 정보를 자동으로 요약하고 추출하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

이 기사에서는 Java 프로젝트 관리, 구축 자동화 및 종속성 해상도에 Maven 및 Gradle을 사용하여 접근 방식과 최적화 전략을 비교합니다.

이 기사에서는 Maven 및 Gradle과 같은 도구를 사용하여 적절한 버전 및 종속성 관리로 사용자 정의 Java 라이브러리 (JAR Files)를 작성하고 사용하는 것에 대해 설명합니다.

이 기사는 카페인 및 구아바 캐시를 사용하여 자바에서 다단계 캐싱을 구현하여 응용 프로그램 성능을 향상시키는 것에 대해 설명합니다. 구성 및 퇴거 정책 관리 Best Pra와 함께 설정, 통합 및 성능 이점을 다룹니다.

이 기사는 캐싱 및 게으른 하중과 같은 고급 기능을 사용하여 객체 관계 매핑에 JPA를 사용하는 것에 대해 설명합니다. 잠재적 인 함정을 강조하면서 성능을 최적화하기위한 설정, 엔티티 매핑 및 모범 사례를 다룹니다. [159 문자]

Java의 클래스 로딩에는 부트 스트랩, 확장 및 응용 프로그램 클래스 로더가있는 계층 적 시스템을 사용하여 클래스로드, 링크 및 초기화 클래스가 포함됩니다. 학부모 위임 모델은 핵심 클래스가 먼저로드되어 사용자 정의 클래스 LOA에 영향을 미치도록합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

드림위버 CS6
시각적 웹 개발 도구

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.
