찾다
기술 주변기기일체 포함이미지와 텍스트 생성을 통합하는 MiniGPT-5가 출시되었습니다. 토큰은 Voken이 되고 모델은 계속해서 쓸 수 있을 뿐만 아니라 자동으로 그림을 추가할 수도 있습니다.

대규모 모델은 언어와 시각 사이를 도약하고 있으며 텍스트와 이미지 콘텐츠를 원활하게 이해하고 생성할 것을 약속합니다. 일련의 최근 연구에서 다중 모드 기능 통합은 증가하는 추세일 뿐만 아니라 이미 다중 모드 대화에서 콘텐츠 생성 도구에 이르기까지 주요 발전을 가져왔습니다. 대규모 언어 모델은 텍스트 이해 및 생성 분야에서 비교할 수 없는 기능을 보여주었습니다. 그러나 일관된 텍스트 내러티브와 동시에 이미지를 생성하는 것은 여전히 ​​개발되어야 할 영역입니다

최근 캘리포니아 대학 산타크루즈 연구팀은 "생성 투표" 개념을 기반으로 하는 MiniGPT-5를 제안했습니다. 인터리브된 시각적 언어 생성 기술.

이미지와 텍스트 생성을 통합하는 MiniGPT-5가 출시되었습니다. 토큰은 Voken이 되고 모델은 계속해서 쓸 수 있을 뿐만 아니라 자동으로 그림을 추가할 수도 있습니다.


  • 논문 주소: https://browse.arxiv.org/pdf/2310.02239v1.pdf
  • 프로젝트 주소: https://github.com/eric- ai-lab/MiniGPT-5

특별한 시각적 토큰인 "생성 투표"를 통해 LLM과 안정적인 확산 메커니즘을 결합한 MiniGPT-5는 숙련된 다중 모드 생성 모델을 위한 새로운 방식을 예고합니다. 동시에, 본 논문에서 제안하는 2단계 학습 방법은 설명이 없는 기본 단계의 중요성을 강조하여 데이터가 부족한 경우에도 모델이 잘 작동할 수 있도록 합니다. 방법의 일반적인 단계에서는 도메인별 주석이 필요하지 않으므로 우리 솔루션이 기존 방법과 구별됩니다. 생성된 텍스트와 이미지가 조화를 이루도록 하기 위해 본 논문의 이중 손실 전략이 적용되며 생성 투표 방법과 분류 방법에 의해 더욱 강화됩니다.

이러한 기술을 기반으로 이 작업은 변혁적 접근 방식을 나타냅니다. 연구팀은 ViT(Vision Transformer)와 Qformer 및 대규모 언어 모델을 사용하여 다중 모드 입력을 생성 투표로 변환하고 이를 고해상도 Stable Diffusion2.1과 원활하게 연결하여 상황 인식 이미지 생성을 달성합니다. 이 논문은 명령 조정 방법과 보조 입력으로 이미지를 결합하고 텍스트 및 이미지 생성 손실의 사용을 개척하여 텍스트와 비전 간의 시너지를 확장합니다

MiniGPT-5는 CLIP 제약과 같은 모델과 일치하여 교묘하게 확산 모델을 융합합니다. MiniGPT-4를 사용하면 도메인별 주석에 의존하지 않고도 더 나은 다중 모드 결과를 얻을 수 있습니다. 가장 중요한 것은 우리의 전략이 다중 모드 시각적 언어의 기본 모델의 발전을 활용하여 다중 모드 생성 기능을 향상시키기 위한 새로운 청사진을 제공할 수 있다는 것입니다.

아래 그림에 표시된 것처럼 MiniGPT5는 원래의 다중 모드 이해 및 텍스트 생성 기능 외에도 합리적이고 일관된 다중 모드 출력도 제공할 수 있습니다.

이미지와 텍스트 생성을 통합하는 MiniGPT-5가 출시되었습니다. 토큰은 Voken이 되고 모델은 계속해서 쓸 수 있을 뿐만 아니라 자동으로 그림을 추가할 수도 있습니다.

이 기사의 기여는 다음과 같습니다. 세 가지 측면에서 반영 :

  • 새로운 일반 기법을 대표하며 LLM 및 역생성 Vokens보다 더 효과적인 것으로 입증된 다중 모드 인코더를 사용하고 이를 Stable Diffusion과 결합하여 인터리브 생성을 제안합니다. 시각적 및 언어적 출력(다중 모드 생성이 가능한 다중 모드 언어 모델)
  • 설명이 필요 없는 다중 모달 생성을 위한 새로운 2단계 교육 전략을 강조합니다. 단일 모달 정렬 단계는 수많은 텍스트-이미지 쌍에서 고품질의 텍스트 정렬 시각적 특징을 얻습니다. 다중 모드 학습 단계에는 새로운 교육 작업, 프롬프트 컨텍스트 생성이 포함되어 시각적 및 텍스트 프롬프트가 잘 조정되고 생성되도록 합니다. 훈련 단계에서 분류기가 없는 지침을 추가하면 생성 품질이 더욱 향상됩니다.
  • 다른 다중 모드 생성 모델과 비교하여 MiniGPT-5는 CC3M 데이터 세트에서 최첨단 성능을 달성합니다. MiniGPT-5는 또한 VIST 및 MMDialog와 같은 잘 알려진 데이터 세트에 대한 새로운 벤치마크를 설정합니다.

이제 본 연구의 내용을 자세히 이해해 봅시다

방법 개요

다중 모드 생성 기능을 갖춘 대규모 언어 모델을 활성화하기 위해 연구자들은 구조화된 프레임워크를 도입했습니다. 사전 학습된 다중 모드 대규모 언어 모델과 텍스트-이미지 생성 모델이 통합되어 있습니다. 서로 다른 모델 분야 간의 차이점을 해결하기 위해 원본 이미지에서 직접 학습할 수 있는 특수 시각적 기호인 "생성 투표"(생성 투표)를 도입했습니다. 또한 분류기가 없는 부트스트래핑 전략과 결합된 2단계 훈련 방법이 발전되어 생성 품질을 더욱 향상시킵니다.

이미지와 텍스트 생성을 통합하는 MiniGPT-5가 출시되었습니다. 토큰은 Voken이 되고 모델은 계속해서 쓸 수 있을 뿐만 아니라 자동으로 그림을 추가할 수도 있습니다.

다중 모드 입력 단계

대형 다중 모드 모델(예: MiniGPT-4)의 최근 발전은 주로 다중 모드 이해에 중점을 두고 이미지를 연속 입력으로 처리할 수 있습니다. 기능을 다중 모드 생성으로 확장하기 위해 연구원들은 시각적 기능을 출력하도록 특별히 설계된 생성형 Vokens를 도입했습니다. 또한 다중 모드 출력 학습을 위해 LLM(대형 언어 모델) 프레임워크 내에서 매개변수 효율적인 미세 조정 기술을 채택했습니다.

다중 모드 출력 생성

토큰은 모델의 정확한 정렬을 생성하기 위해 연구원들은 차원 일치를 위한 컴팩트 매핑 모듈을 개발하고 텍스트 공간 손실 및 잠재 확산 모델 손실을 포함한 여러 감독 손실을 도입했습니다. 텍스트 공간 손실은 모델이 토큰의 위치를 ​​정확하게 학습하는 데 도움이 되는 반면, 잠재 확산 손실은 토큰을 적절한 시각적 특징에 직접 정렬합니다. 생성 기호의 특징은 이미지에 의해 직접 안내되므로 이 방법은 완전한 이미지 설명이 필요하지 않으며 설명 없는 학습을 달성합니다

training strategy

사이에 무시할 수 없는 존재가 있다는 점을 고려하면 텍스트 도메인과 이미지 도메인 도메인 이동으로 인해 연구원들은 제한된 인터리브된 텍스트 및 이미지 데이터 세트에 대한 직접 교육이 정렬 불량 및 이미지 품질 저하로 이어질 수 있음을 발견했습니다.

그래서 그들은 이 문제를 완화하기 위해 두 가지 다른 훈련 전략을 사용했습니다. 첫 번째 전략은 확산 프로세스 전반에 걸쳐 생성된 토큰의 효율성을 향상시키기 위해 분류자가 없는 부트스트래핑 기술을 사용하는 것입니다. 두 번째 전략은 대략적인 기능 정렬에 초점을 맞춘 초기 사전 훈련 단계와 미세 조정 단계로 진행됩니다. 복잡한 특징 학습에 대해

실험 및 결과

모델의 효율성을 평가하기 위해 연구진은 여러 벤치마크를 선택하고 일련의 평가를 수행했습니다. 실험의 목적은 다음과 같은 몇 가지 핵심 질문을 해결하는 것입니다.

  • MiniGPT-5는 신뢰할 수 있는 이미지와 합리적인 텍스트를 생성할 수 있습니까?
  • MiniGPT-5는 단일 라운드 및 다중 라운드 인터리브 시각적 언어 생성 작업에서 다른 SOTA 모델과 비교하여 어떻게 수행됩니까?
  • 각 모듈의 디자인이 전체 성능에 어떤 영향을 미치나요?

다양한 훈련 단계에서 MiniGPT-5 모델의 성능을 평가하기 위해 정량적 분석을 실시했으며 그 결과는 그림 3에 나와 있습니다.

이미지와 텍스트 생성을 통합하는 MiniGPT-5가 출시되었습니다. 토큰은 Voken이 되고 모델은 계속해서 쓸 수 있을 뿐만 아니라 자동으로 그림을 추가할 수도 있습니다.

다양성과 견고성을 입증하기 위해 제안된 모델의 시각적(이미지 관련 측정항목) 및 언어적(텍스트 측정항목) 영역을 모두 포함하여 평가했습니다.

VIST 최종 단계 평가

첫 번째 실험 세트에는 단일 단계 평가 즉, 마지막 단계의 프롬프트 모델에 따라 해당 이미지가 생성되며 그 결과는 표 1에 나와 있습니다.

MiniGPT-5는 세 가지 설정 모두에서 미세 조정된 SD 2보다 성능이 뛰어납니다. 특히 MiniGPT-5(LoRA) 모델의 CLIP 점수는 특히 이미지와 텍스트 프롬프트를 결합할 때 여러 프롬프트 유형에서 다른 변형보다 지속적으로 뛰어난 성능을 발휘합니다. 반면, FID 점수는 MiniGPT-5(Prefix) 모델의 경쟁력을 강조하며, 이미지 임베딩 품질(CLIP 점수에 반영됨)과 이미지 다양성 및 신뢰성(CLIP 점수에 반영됨) 사이에 균형이 있을 수 있음을 나타냅니다. FID 점수). 단일 양식 등록 단계(UAS가 없는 MiniGPT-5)를 포함하지 않고 VIST에서 직접 훈련된 모델과 비교하면 모델이 의미 있는 이미지를 생성하는 기능을 유지하더라도 이미지 품질과 일관성이 크게 저하됩니다. 이 관찰은 2단계 훈련 전략의 중요성을 강조합니다

이미지와 텍스트 생성을 통합하는 MiniGPT-5가 출시되었습니다. 토큰은 Voken이 되고 모델은 계속해서 쓸 수 있을 뿐만 아니라 자동으로 그림을 추가할 수도 있습니다.

VIST 다단계 평가

더 자세하고 포괄적인 평가에서 연구자들은 역사적 이전 모델에 체계적으로 공급했습니다. 맥락에 따라 결과 이미지와 내러티브가 각 단계에서 평가됩니다.

표 2와 표 3은 이러한 실험 결과를 요약하여 각각 이미지 및 언어 측정항목에 대한 성능 개요를 제공합니다. 실험 결과에 따르면 MiniGPT-5는 긴 수준의 다중 모드 입력 신호를 활용하여 원래 모델의 다중 모드 이해 기능을 손상시키지 않으면서 모든 데이터에 걸쳐 일관된 고품질 이미지를 생성할 수 있는 것으로 나타났습니다. 이는 다양한 환경에서 MiniGPT-5의 효율성을 강조합니다.

이미지와 텍스트 생성을 통합하는 MiniGPT-5가 출시되었습니다. 토큰은 Voken이 되고 모델은 계속해서 쓸 수 있을 뿐만 아니라 자동으로 그림을 추가할 수도 있습니다.

이미지와 텍스트 생성을 통합하는 MiniGPT-5가 출시되었습니다. 토큰은 Voken이 되고 모델은 계속해서 쓸 수 있을 뿐만 아니라 자동으로 그림을 추가할 수도 있습니다.

VIST 인간 평가

표 4에서 볼 수 있듯이 MiniGPT-5 7.18 %가 더 관련성 있게 생성됨 52.06%의 사례에서 텍스트 서술이 더 나은 이미지 품질을 제공했으며, 52.06%의 사례에서 더 나은 이미지 품질을 제공했으며, 57.62%의 장면에서 보다 일관된 다중 모드 출력을 생성했습니다. 가정법 없이 텍스트-이미지 프롬프트 내레이션을 채택하는 2단계 기준과 비교하여 이러한 데이터는 더 강력한 다중 모드 생성 기능을 분명히 보여줍니다.

이미지와 텍스트 생성을 통합하는 MiniGPT-5가 출시되었습니다. 토큰은 Voken이 되고 모델은 계속해서 쓸 수 있을 뿐만 아니라 자동으로 그림을 추가할 수도 있습니다.

MMDialog 여러 차례의 평가

표 5의 결과에 따르면 MiniGPT-5는 기본 모델인 Divter보다 텍스트 답장을 생성하는 데 더 정확합니다. 생성된 이미지의 품질은 비슷하지만 MiniGPT-5는 MM 상관 관계 측면에서 기본 모델보다 성능이 뛰어나 이미지 생성 위치를 적절하게 지정하고 매우 일관된 다중 모드 응답을 생성하는 방법을 더 잘 학습할 수 있음을 시사합니다.

이미지와 텍스트 생성을 통합하는 MiniGPT-5가 출시되었습니다. 토큰은 Voken이 되고 모델은 계속해서 쓸 수 있을 뿐만 아니라 자동으로 그림을 추가할 수도 있습니다.

MiniGPT-5의 출력을 살펴보고 얼마나 효과적인지 살펴보겠습니다. 아래 그림 7은 MiniGPT-5와 CC3M 검증 세트의 기준 모델을 비교합니다

이미지와 텍스트 생성을 통합하는 MiniGPT-5가 출시되었습니다. 토큰은 Voken이 되고 모델은 계속해서 쓸 수 있을 뿐만 아니라 자동으로 그림을 추가할 수도 있습니다.

아래 그림 8은 MiniGPT-5와 VIST 검증 세트의 기준 모델을 비교합니다

이미지와 텍스트 생성을 통합하는 MiniGPT-5가 출시되었습니다. 토큰은 Voken이 되고 모델은 계속해서 쓸 수 있을 뿐만 아니라 자동으로 그림을 추가할 수도 있습니다.

아래 그림 9는 MiniGPT-5와 MMDialog 테스트 세트의 기준 모델을 비교한 것입니다.

이미지와 텍스트 생성을 통합하는 MiniGPT-5가 출시되었습니다. 토큰은 Voken이 되고 모델은 계속해서 쓸 수 있을 뿐만 아니라 자동으로 그림을 추가할 수도 있습니다.

자세한 연구 내용은 원문을 참고해주세요.

위 내용은 이미지와 텍스트 생성을 통합하는 MiniGPT-5가 출시되었습니다. 토큰은 Voken이 되고 모델은 계속해서 쓸 수 있을 뿐만 아니라 자동으로 그림을 추가할 수도 있습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 51CTO.COM에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
Huggingface Smollm으로 개인 AI 조수를 만드는 방법Huggingface Smollm으로 개인 AI 조수를 만드는 방법Apr 18, 2025 am 11:52 AM

ON-DEVICE AI의 힘을 활용 : 개인 챗봇 CLI 구축 최근에 개인 AI 조수의 개념은 공상 과학처럼 보였다. 기술 애호가 인 Alex, 똑똑하고 현지 AI 동반자를 꿈꾸는 것을 상상해보십시오.

정신 건강을위한 AI는 스탠포드 대학교의 흥미로운 새로운 이니셔티브를 통해주의 깊게 분석됩니다.정신 건강을위한 AI는 스탠포드 대학교의 흥미로운 새로운 이니셔티브를 통해주의 깊게 분석됩니다.Apr 18, 2025 am 11:49 AM

AI4MH의 첫 출시는 2025 년 4 월 15 일에 열렸으며, 유명한 정신과 의사이자 신경 과학자 인 Luminary Dr. Tom Insel 박사는 킥오프 스피커 역할을했습니다. Insel 박사는 정신 건강 연구 및 테크노에서 뛰어난 작업으로 유명합니다.

2025 WNBA 드래프트 클래스는 리그가 성장하고 온라인 괴롭힘과 싸우고 있습니다.2025 WNBA 드래프트 클래스는 리그가 성장하고 온라인 괴롭힘과 싸우고 있습니다.Apr 18, 2025 am 11:44 AM

Engelbert는 "WNBA가 모든 사람, 플레이어, 팬 및 기업 파트너가 안전하고 가치가 있으며 권한을 부여받는 공간으로 남아 있기를 원합니다. 아노

파이썬 내장 데이터 구조에 대한 포괄적 인 가이드 - 분석 Vidhya파이썬 내장 데이터 구조에 대한 포괄적 인 가이드 - 분석 VidhyaApr 18, 2025 am 11:43 AM

소개 Python은 특히 데이터 과학 및 생성 AI에서 프로그래밍 언어로 탁월합니다. 대규모 데이터 세트를 처리 할 때 효율적인 데이터 조작 (저장, 관리 및 액세스)이 중요합니다. 우리는 이전에 숫자와 st를 다루었습니다

대안과 비교하여 OpenAi의 새로운 모델의 첫인상대안과 비교하여 OpenAi의 새로운 모델의 첫인상Apr 18, 2025 am 11:41 AM

다이빙하기 전에 중요한 경고 : AI 성능은 비 결정적이며 고도로 사용하는 것이 중요합니다. 간단히 말하면 마일리지는 다를 수 있습니다. 이 기사 (또는 다른) 기사를 최종 단어로 취하지 마십시오. 대신 에이 모델을 자신의 시나리오에서 테스트하십시오.

AI 포트폴리오 | AI 경력을위한 포트폴리오를 구축하는 방법은 무엇입니까?AI 포트폴리오 | AI 경력을위한 포트폴리오를 구축하는 방법은 무엇입니까?Apr 18, 2025 am 11:40 AM

뛰어난 AI/ML 포트폴리오 구축 : 초보자 및 전문가를위한 안내서 인공 지능 (AI) 및 머신 러닝 (ML)의 역할을 확보하는 데 강력한 포트폴리오를 만드는 것이 중요합니다. 이 안내서는 포트폴리오 구축에 대한 조언을 제공합니다

보안 운영에 대한 에이전트 AI가 무엇을 의미 할 수 있는지보안 운영에 대한 에이전트 AI가 무엇을 의미 할 수 있는지Apr 18, 2025 am 11:36 AM

결과? 소진, 비 효율성 및 탐지와 동작 사이의 넓은 차이. 이 중 어느 것도 사이버 보안에서 일하는 사람에게는 충격이되지 않습니다. 그러나 에이전트 AI의 약속은 잠재적 인 전환점으로 부상했다. 이 새로운 수업

Google 대 Openai : AI 학생들을위한 AI 싸움Google 대 Openai : AI 학생들을위한 AI 싸움Apr 18, 2025 am 11:31 AM

장기 파트너십 대 즉각적인 영향? 2 주 전 Openai는 2025 년 5 월 말까지 미국과 캐나다 대학생들에게 Chatgpt Plus에 무료로 이용할 수있는 강력한 단기 제안으로 발전했습니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경