찾다
백엔드 개발파이썬 튜토리얼Python 그리기 차트용 공통 라이브러리 및 확장 소개

Python 그리기 차트용 공통 라이브러리 및 확장 소개

Sep 29, 2023 pm 04:24 PM
산점도matplotlib: Python에서 가장 일반적으로 사용되는 플로팅 라이브러리꺾은선형 차트 등히스토그램 등

Python 그리기 차트용 공통 라이브러리 및 확장 소개

Python은 풍부한 차트 라이브러리 덕분에 데이터 시각화를 더 쉽게 만들어주는 강력하고 사용하기 쉬운 프로그래밍 언어입니다. 이 기사에서는 일반적으로 사용되는 여러 Python 차트 그리기 라이브러리와 일부 확장을 소개하고 몇 가지 특정 코드 예제도 제공합니다.

  1. Matplotlib
    Matplotlib는 Python에서 가장 고전적이고 널리 사용되는 차트 라이브러리 중 하나입니다. 꺾은선형 차트, 분산형 차트, 막대형 차트, 원형 차트 등 다양한 차트 유형을 제공합니다. 다음은 Matplotlib를 사용하여 간단한 선 차트를 그리는 방법을 보여주는 간단한 예입니다.
import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y = [10, 8, 6, 4, 2]

plt.plot(x, y)
plt.xlabel('x轴')
plt.ylabel('y轴')
plt.title('简单折线图')
plt.show()
  1. Seaborn
    Seaborn은 Matplotlib 위에 구축된 통계 그래픽 라이브러리로, 일부 고급 차트 유형을 제공하고 기본 스타일이 더 아름답습니다. 다음은 Seaborn을 사용하여 추세선과 신뢰 구간이 포함된 산점도에 대한 예제 코드입니다.
import seaborn as sns

tips = sns.load_dataset('tips')

sns.regplot(x='total_bill', y='tip', data=tips)
plt.xlabel('总账单')
plt.ylabel('小费')
plt.title('账单金额和小费之间的关系')
plt.show()
  1. Plotly
    Plotly는 아름답고 대화형 차트를 만드는 데 사용할 수 있는 대화형 차트 그리기 라이브러리입니다. 산점도, 막대 차트, 영역 차트 등 다양한 유형의 차트 그리기를 지원합니다. 다음은 Plotly를 사용하여 히스토그램을 그리는 샘플 코드입니다.
import plotly.express as px

df = px.data.tips()

fig = px.bar(df, x='day', y='total_bill', color='sex', barmode='group')
fig.show()
  1. ggplot
    ggplot은 R 언어의 유명한 ggplot2 패키지를 기반으로 하는 Python 구현으로, 다양한 유형의 차트를 그리는 간단하고 유연한 방법을 제공합니다. 다음은 ggplot을 사용하여 그린 산점도의 샘플 코드입니다.
from ggplot import *

df = mpg

ggplot(aes(x='displ', y='hwy', color='class'), data=df) +
    geom_point() +
    xlab('发动机排量') +
    ylab('高速公路里程') +
    ggtitle('散点图') +
    theme_bw()

위는 몇 가지 일반적인 Python 차트 그리기 라이브러리에 대한 간략한 소개일 뿐입니다. 실제로 Bokeh, Altair, Pygal과 같은 다른 라이브러리도 많이 있습니다. 등. 다양한 요구 사항에 따라 다양한 라이브러리를 선택하여 차트를 그릴 수 있습니다.

요약하자면 Python 차트 그리기 라이브러리는 풍부한 기능과 유연한 옵션을 제공하므로 시각화를 통해 데이터를 더 잘 이해하고 표시할 수 있습니다. 이러한 라이브러리를 사용하면 다양한 유형의 차트를 쉽게 만들 수 있으며 필요에 따라 차트를 사용자 정의하고 조정할 수도 있습니다. 이 기사가 독자들이 Python 차트 그리기 라이브러리에 대한 사전 이해를 갖고 제공된 코드 예제를 통해 깊은 인상을 받는 데 도움이 되기를 바랍니다.

위 내용은 Python 그리기 차트용 공통 라이브러리 및 확장 소개의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Python vs. C : 학습 곡선 및 사용 편의성Python vs. C : 학습 곡선 및 사용 편의성Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

Python vs. C : 메모리 관리 및 제어Python vs. C : 메모리 관리 및 제어Apr 19, 2025 am 12:17 AM

Python과 C는 메모리 관리 및 제어에 상당한 차이가 있습니다. 1. Python은 참조 계산 및 쓰레기 수집을 기반으로 자동 메모리 관리를 사용하여 프로그래머의 작업을 단순화합니다. 2.C는 메모리 수동 관리가 필요하므로 더 많은 제어를 제공하지만 복잡성과 오류 위험을 증가시킵니다. 선택할 언어는 프로젝트 요구 사항 및 팀 기술 스택을 기반으로해야합니다.

과학 컴퓨팅을위한 파이썬 : 상세한 모양과학 컴퓨팅을위한 파이썬 : 상세한 모양Apr 19, 2025 am 12:15 AM

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

파이썬 및 C : 올바른 도구 찾기파이썬 및 C : 올바른 도구 찾기Apr 19, 2025 am 12:04 AM

Python 또는 C를 선택할 것인지 프로젝트 요구 사항에 따라 다릅니다. 1) Python은 간결한 구문 및 풍부한 라이브러리로 인해 빠른 개발, 데이터 과학 및 스크립팅에 적합합니다. 2) C는 컴파일 및 수동 메모리 관리로 인해 시스템 프로그래밍 및 게임 개발과 같은 고성능 및 기본 제어가 필요한 시나리오에 적합합니다.

데이터 과학 및 기계 학습을위한 파이썬데이터 과학 및 기계 학습을위한 파이썬Apr 19, 2025 am 12:02 AM

Python은 데이터 과학 및 기계 학습에 널리 사용되며 주로 단순성과 강력한 라이브러리 생태계에 의존합니다. 1) 팬더는 데이터 처리 및 분석에 사용되며, 2) Numpy는 효율적인 수치 계산을 제공하며 3) Scikit-Learn은 기계 학습 모델 구성 및 최적화에 사용되며 이러한 라이브러리는 Python을 데이터 과학 및 기계 학습에 이상적인 도구로 만듭니다.

Python 학습 : 2 시간의 일일 연구가 충분합니까?Python 학습 : 2 시간의 일일 연구가 충분합니까?Apr 18, 2025 am 12:22 AM

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

웹 개발을위한 파이썬 : 주요 응용 프로그램웹 개발을위한 파이썬 : 주요 응용 프로그램Apr 18, 2025 am 12:20 AM

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

Python vs. C : 성능과 효율성 탐색Python vs. C : 성능과 효율성 탐색Apr 18, 2025 am 12:20 AM

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경