NLP용 Python: 특수 문자나 기호가 포함된 PDF 텍스트를 처리하는 방법은 무엇입니까?
요약: PDF는 일반적인 문서 형식이지만 특수 문자나 기호가 포함된 PDF 텍스트는 자연어 처리(NLP) 작업에 어려울 수 있습니다. 이 기사에서는 Python을 사용하여 이러한 PDF 텍스트를 처리하는 방법을 소개하고 구체적인 코드 예제를 제공합니다.
이러한 라이브러리는 다음 명령을 사용하여 설치할 수 있습니다:
pip install PyPDF2 pip install nltk pip install pandas
import PyPDF2 def extract_text_from_pdf(pdf_path): text = "" with open(pdf_path, "rb") as f: pdf = PyPDF2.PdfReader(f) for page in pdf.pages: text += page.extract_text() return text pdf_path = "example.pdf" text = extract_text_from_pdf(pdf_path) print(text)
import re # 清除特殊字符或符号 def clean_text(text): clean_text = re.sub(r"[^ws]", "", text) return clean_text cleaned_text = clean_text(text) print(cleaned_text)
위 코드에서는 정규식을 사용하여 특수 문자나 기호를 지웠습니다. re.sub(r"[^ws]", "", text)
이 코드 줄은 문자, 숫자, 밑줄 및 공백을 제외한 모든 문자를 일치시키고 이를 null 문자 문자열로 바꿉니다. re.sub(r"[^ws]", "", text)
这行代码将匹配所有除了字母、数字、下划线和空格之外的字符,并将它们替换为空字符串。
from nltk.tokenize import word_tokenize from nltk.probability import FreqDist # 文本标记化 tokens = word_tokenize(cleaned_text) # 词频统计 fdist = FreqDist(tokens) print(fdist.most_common(10))
在上面的代码中,我们使用了NLTK库中的word_tokenize
函数对文本进行标记化,将文本拆分成单词或标记。然后,我们使用FreqDist
word_tokenize
함수를 사용하여 텍스트를 토큰화합니다. 텍스트를 단어나 토큰으로 변환합니다. 그런 다음 FreqDist
함수를 사용하여 각 단어의 빈도를 계산하고 빈도가 가장 높은 상위 10개 단어를 출력합니다. 위 내용은 NLP용 Python: 특수 문자나 기호가 포함된 PDF 텍스트를 처리하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!