NLP용 Python: 여러 데이터 열이 포함된 PDF 텍스트를 처리하는 방법은 무엇입니까?
개요:
자연어 처리(NLP)의 발전으로 PDF 텍스트 처리가 매우 중요한 작업이 되었습니다. 그러나 PDF 텍스트에 여러 데이터 열이 포함되어 있으면 처리가 더 복잡해집니다. 이 기사에서는 Python을 사용하여 여러 데이터 열이 포함된 PDF 텍스트를 처리하고, 유용한 정보를 추출하고, 적절한 데이터 처리를 수행하는 방법을 소개합니다.
1단계: 필요한 라이브러리 설치
먼저 PDF 텍스트 처리를 용이하게 하기 위해 필요한 Python 라이브러리를 설치해야 합니다. 이러한 라이브러리에는 pdfplumber 및 pandas가 포함됩니다. 다음 명령을 사용하여 설치할 수 있습니다.
pip install pdfplumber pandas
2단계: 필수 라이브러리 가져오기
실제 코딩을 시작하기 전에 필수 라이브러리를 가져와야 합니다. 다음 명령을 실행하여 pdfplumber 및 pandas 라이브러리를 가져올 수 있습니다.
import pdfplumber import pandas as pd
3단계: PDF 파일을 읽고 텍스트를 추출합니다.
다음으로 PDF 파일을 읽고 텍스트를 추출해야 합니다. PDF 파일은 pdfplumber 라이브러리의 pdfplumber.open() 함수를 사용하여 열 수 있으며 모든 텍스트는 extract_text() 메서드를 사용하여 추출됩니다. 다음은 간단한 예입니다.
with pdfplumber.open('multi_column_data.pdf') as pdf: text = "" for page in pdf.pages: text += page.extract_text()
4단계: 텍스트를 DataFrame으로 변환
텍스트를 추출한 후 처리에 적합한 데이터 구조로 변환해야 합니다. PDF 텍스트에는 여러 데이터 열이 포함되어 있으므로 pandas 라이브러리의 DataFrame을 사용하여 이 데이터를 처리할 수 있습니다. 다음은 텍스트를 DataFrame으로 변환하는 예입니다.
data = pd.DataFrame([row.split(' ') for row in text.split(' ') if row.strip() != ''])
위 코드에서는 분할() 메서드를 사용하여 텍스트를 행 단위로 분할하고, 추가로 분할('
')을 사용하여 각 행을 열로 분할합니다. 또한 데이터를 서로 다른 행으로 분할하기 위해 Split('
')을 사용하고, 빈 행을 제거하기 위해 판단 조건을 사용합니다.
5단계: 데이터 처리 및 정리
텍스트를 DataFrame으로 변환했으므로 이제 데이터 처리 및 정리를 시작할 수 있습니다. 다중 열 데이터를 처리할 때 Pandas에서 제공하는 다양한 방법과 기능을 사용하여 처리할 수 있습니다. 다음은 몇 가지 일반적인 데이터 처리 작업의 예입니다. 특정 열을 선택합니다.
- 마지막 단계는 처리된 데이터를 저장하는 것입니다. pandas 라이브러리에서 제공하는 to_csv() 메서드를 사용하여 데이터를 CSV 파일로 저장할 수 있고, to_excel() 메서드를 사용하여 데이터를 Excel 파일로 저장할 수 있습니다. 다음은 데이터를 CSV 파일로 저장하는 예입니다.
selected_data = data[[0, 1]]
요약:
Python에서 pdfplumber 및 pandas 라이브러리를 사용하면 여러 데이터 열이 포함된 PDF 텍스트를 쉽게 처리할 수 있습니다. 먼저 pdfplumumber 라이브러리를 사용하여 텍스트를 추출하고 처리에 적합한 데이터 구조로 변환합니다. 그런 다음 데이터 처리 및 정리를 위해 pandas 라이브러리를 사용하십시오. 마지막으로 처리된 데이터를 CSV 또는 Excel 파일로 저장할 수 있습니다. 이 기사가 여러 데이터 열이 포함된 PDF 텍스트를 처리하는 간단하면서도 효과적인 방법을 제공하기를 바랍니다.
위 내용은 NLP용 Python: 여러 데이터 열이 포함된 PDF 텍스트를 처리하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Arraysinpython, 특히 비밀 복구를위한 ArecrucialInscientificcomputing.1) theaRearedFornumericalOperations, DataAnalysis 및 MachinELearning.2) Numpy'SimplementationIncensuressuressurations thanpythonlists.3) arraysenablequick

Pyenv, Venv 및 Anaconda를 사용하여 다양한 Python 버전을 관리 할 수 있습니다. 1) PYENV를 사용하여 여러 Python 버전을 관리합니다. Pyenv를 설치하고 글로벌 및 로컬 버전을 설정하십시오. 2) VENV를 사용하여 프로젝트 종속성을 분리하기 위해 가상 환경을 만듭니다. 3) Anaconda를 사용하여 데이터 과학 프로젝트에서 Python 버전을 관리하십시오. 4) 시스템 수준의 작업을 위해 시스템 파이썬을 유지하십시오. 이러한 도구와 전략을 통해 다양한 버전의 Python을 효과적으로 관리하여 프로젝트의 원활한 실행을 보장 할 수 있습니다.

Numpyarrayshaveseveraladvantagesstandardpythonarrays : 1) thearemuchfasterduetoc 기반 간증, 2) thearemorememory-refficient, 특히 withlargedatasets 및 3) wepferoptizedformationsformationstaticaloperations, 만들기, 만들기

어레이의 균질성이 성능에 미치는 영향은 이중입니다. 1) 균질성은 컴파일러가 메모리 액세스를 최적화하고 성능을 향상시킬 수 있습니다. 2) 그러나 유형 다양성을 제한하여 비 효율성으로 이어질 수 있습니다. 요컨대, 올바른 데이터 구조를 선택하는 것이 중요합니다.

tocraftexecutablepythonscripts, 다음과 같은 비스트 프랙티스를 따르십시오 : 1) 1) addashebangline (#!/usr/bin/envpython3) tomakethescriptexecutable.2) setpermissionswithchmod xyour_script.py.3) organtionewithlarstringanduseifname == "__"

numpyarraysarebetterfornumericaloperations 및 multi-dimensionaldata, mumemer-efficientArrays

numpyarraysarebetterforheavynumericalcomputing, whilearraymoduleisiMoresuily-sportainedprojectswithsimpledatatypes.1) numpyarraysofferversatively 및 formanceforgedatasets 및 complexoperations.2) Thearraymoduleisweighit 및 ep

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

Dreamweaver Mac版
시각적 웹 개발 도구

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

드림위버 CS6
시각적 웹 개발 도구
