Python을 사용하여 사진에 노이즈를 추가하는 방법
소개:
기술의 발전으로 디지털 이미지 처리가 일반적인 이미지 처리 방법이 되었습니다. 그 중 이미지에 노이즈를 추가하는 것은 이미지 처리에서 중요한 단계입니다. 노이즈를 추가하면 이미지의 현실감과 복잡성을 향상시킬 수 있습니다. 이 기사에서는 Python을 사용하여 이미지에 노이즈를 추가하는 방법을 소개하고 관련 코드 예제를 제공합니다.
1. 이미지 노이즈 이해하기
이미지 노이즈는 이미지 품질과 선명도에 영향을 미치는 무작위 장애를 의미합니다. 일반적인 이미지 노이즈에는 가우스 노이즈, 소금 및 후추 노이즈, 포아송 노이즈 등이 포함됩니다. 그 중 가우스 노이즈(Gaussian Noise)는 가장 일반적이고 가장 많이 사용되는 노이즈 유형으로 가우스 분포를 따르는 난수입니다.
2. Python으로 이미지 노이즈 추가 구현
NumPy 및 OpenCV 라이브러리를 사용하면 Python을 사용하여 이미지에 노이즈를 추가할 수 있습니다. 다음은 이미지에 가우스 노이즈를 추가하는 방법을 보여주는 샘플 코드입니다.
import cv2 import numpy as np def add_gaussian_noise(image): mean = 0 std_dev = 50 noise = np.random.normal(mean, std_dev, image.shape).astype(np.uint8) noisy_image = cv2.add(image, noise) return noisy_image # 读取图像 image = cv2.imread('image.jpg') # 添加高斯噪声 noisy_image = add_gaussian_noise(image) # 显示原始图像和噪声图像 cv2.imshow('Original Image', image) cv2.imshow('Noisy Image', noisy_image) cv2.waitKey(0) cv2.destroyAllWindows()
위 코드에서 먼저 cv2.imread()
함수를 사용하여 이미지를 읽어옵니다. 그런 다음 np.random.normal()
함수를 사용하여 가우스 분포에 맞는 무작위 노이즈를 생성하고 cv2를 사용하는 <code>add_gaussian_noise()
함수가 정의됩니다. add() 함수는 원본 이미지에 노이즈를 추가합니다. 마지막으로 cv2.imshow()
함수를 사용하여 원본 이미지와 노이즈 이미지를 표시하고 cv2.waitKey(0)
등의 함수를 사용하여 표시 시간과 상호 작용. cv2.imread()
函数读取一张图像。然后,定义了一个add_gaussian_noise()
函数,该函数使用np.random.normal()
函数生成符合高斯分布的随机噪声,并使用cv2.add()
函数将噪声添加到原始图像中。最后,使用cv2.imshow()
函数显示原始图像和噪声图像,并使用cv2.waitKey(0)
等函数控制显示的时间和交互。
三、其他噪声添加方法
除了高斯噪声,还有其他一些噪声添加方法可以使用。例如,可以使用np.random.randint()
函数生成椒盐噪声,代码示例如下:
def add_salt_and_pepper_noise(image, salt_prob, pepper_prob): noise = np.zeros(image.shape, dtype=np.uint8) salt_locations = np.random.rand(*image.shape) < salt_prob pepper_locations = np.random.rand(*image.shape) < pepper_prob noise[salt_locations] = 255 noise[pepper_locations] = 0 noisy_image = cv2.add(image, noise) return noisy_image # 添加椒盐噪声 noisy_image = add_salt_and_pepper_noise(image, salt_prob=0.01, pepper_prob=0.01)
在以上示例代码中,add_salt_and_pepper_noise()
函数使用np.random.randint()
가우스 노이즈 외에도 사용할 수 있는 다른 노이즈 추가 방법이 있습니다. 예를 들어 np.random.randint()
함수를 사용하여 소금과 후추 노이즈를 생성할 수 있습니다. 코드 예시는 다음과 같습니다.
위 샘플 코드에서 add_salt_and_pepper_noise ()
함수는 np.random.randint()
함수는 0에서 255 사이의 임의의 정수를 생성한 다음 소금의 비율에 따라 픽셀 값을 흰색과 검정색으로 설정합니다. 후추 노이즈를 추가하고 마지막으로 원본 이미지에 노이즈를 추가합니다.
위 내용은 Python을 사용하여 사진에 노이즈를 추가하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경
