Flask 빌드 ES 검색을 사용해 보세요. ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
구성 파일
#coding:utf-8 import os DB_USERNAME = 'root' DB_PASSWORD = None # 如果没有密码的话 DB_HOST = '127.0.0.1' DB_PORT = '3306' DB_NAME = 'flask_es' class Config: SECRET_KEY ="随机字符" # 随机 SECRET_KEY SQLALCHEMY_COMMIT_ON_TEARDOWN = True # 自动提交 SQLALCHEMY_TRACK_MODIFICATIONS = True # 自动sql DEBUG = True # debug模式 SQLALCHEMY_DATABASE_URI = 'mysql+pymysql://%s:%s@%s:%s/%s' % (DB_USERNAME, DB_PASSWORD,DB_HOST, DB_PORT, DB_NAME) #数据库URL MAIL_SERVER = 'smtp.qq.com' MAIL_POST = 465 MAIL_USERNAME = '3417947630@qq.com' MAIL_PASSWORD = '邮箱授权码' FLASK_MAIL_SUBJECT_PREFIX='M_KEPLER' FLASK_MAIL_SENDER=MAIL_USERNAME # 默认发送人 # MAIL_USE_SSL = True MAIL_USE_TLS = False MAIL_DEBUG = False ENABLE_THREADS=True
이면 충분합니다. 그런 다음 이메일 알림은 개인적인 필요에 따라 달라집니다...
Logger.py
로그 모듈은 엔지니어링 애플리케이션에 없어서는 안될 부분입니다. 다양한 생산 환경에 따라 로그 파일을 출력하는 것이 매우 필요합니다. 강호의 말을 쓰려면 "로그 파일이 없으면 죽을 줄도 모르고 죽는다..."
# coding=utf-8 import os import logging import logging.config as log_conf import datetime import coloredlogs coloredlogs.DEFAULT_FIELD_STYLES = {'asctime': {'color': 'green'}, 'hostname': {'color': 'magenta'}, 'levelname': {'color': 'magenta', 'bold': False}, 'name': {'color': 'green'}} log_dir = os.path.dirname(os.path.dirname(__file__)) + '/logs' if not os.path.exists(log_dir): os.mkdir(log_dir) today = datetime.datetime.now().strftime("%Y-%m-%d") log_path = os.path.join(log_dir, today + ".log") log_config = { 'version': 1.0, # 格式输出 'formatters': { 'colored_console': { 'format': "%(asctime)s - %(name)s - %(levelname)s - %(message)s", 'datefmt': '%H:%M:%S' }, 'detail': { 'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s', 'datefmt': "%Y-%m-%d %H:%M:%S" #时间格式 }, }, 'handlers': { 'console': { 'class': 'logging.StreamHandler', 'level': 'DEBUG', 'formatter': 'colored_console' }, 'file': { 'class': 'logging.handlers.RotatingFileHandler', 'maxBytes': 1024 * 1024 * 1024, 'backupCount': 1, 'filename': log_path, 'level': 'INFO', 'formatter': 'detail', # 'encoding': 'utf-8', # utf8 编码 防止出现编码错误 }, }, 'loggers': { 'logger': { 'handlers': ['console'], 'level': 'DEBUG', }, } } log_conf.dictConfig(log_config) log_v = logging.getLogger('log') coloredlogs.install(level='DEBUG', logger=log_v) # # Some examples. # logger.debug("this is a debugging message") # logger.info("this is an informational message") # logger.warning("this is a warning message") # logger.error("this is an error message") # logger.critical("this is a critical message")
파일로 출력될 수 있습니다.

路由
对于 Flask 项目而言, 蓝图和路由会让整个项目更具观赏性(当然指的是代码的阅读)。
这里我采用两个分支来作为数据支撑,一个是 Math 入口,另一个是 Baike 入口,数据的来源是基于上一篇的百度百科爬虫所得,根据 深度优先 的爬取方式抓取后放入 ES 中。
# coding:utf8 from flask import Flask from flask_sqlalchemy import SQLAlchemy from app.config.config import Config from flask_mail import Mail from flask_wtf.csrf import CSRFProtect app = Flask(__name__,template_folder='templates',static_folder='static') app.config.from_object(Config) db = SQLAlchemy(app) db.init_app(app) csrf = CSRFProtect(app) mail = Mail(app) # 不要在生成db之前导入注册蓝图。 from app.home.baike import baike as baike_blueprint from app.home.math import math as math_blueprint from app.home.home import home as home_blueprint app.register_blueprint(home_blueprint) app.register_blueprint(math_blueprint,url_prefix="/math") app.register_blueprint(baike_blueprint,url_prefix="/baike")
# -*- coding:utf-8 -*- from flask import Blueprint baike = Blueprint("baike", __name__) from app.home.baike import views
# -*- coding:utf-8 -*- from flask import Blueprint math = Blueprint("math", __name__) from app.home.math import views
声明路由并在 __init__ 文件中初始化
下面来看看路由的实现(以Baike为例)
# -*- coding:utf-8 -*- import os from flask_paginate import Pagination, get_page_parameter from app.Logger.logger import log_v from app.elasticsearchClass import elasticSearch from app.home.forms import SearchForm from app.home.baike import baike from flask import request, jsonify, render_template, redirect baike_es = elasticSearch(index_type="baike_data",index_name="baike") @baike.route("/") def index(): searchForm = SearchForm() return render_template('baike/index.html', searchForm=searchForm) @baike.route("/search", methods=['GET', 'POST']) def baikeSearch(): search_key = request.args.get("b", default=None) if search_key: searchForm = SearchForm() log_v.error("[+] Search Keyword: " + search_key) match_data = baike_es.search(search_key,count=30) # 翻页 PER_PAGE = 10 page = request.args.get(get_page_parameter(), type=int, default=1) start = (page - 1) * PER_PAGE end = start + PER_PAGE total = 30 print("最大数据总量:", total) pagination = Pagination(page=page, start=start, end=end, total=total) context = { 'match_data': match_data["hits"]["hits"][start:end], 'pagination': pagination, 'uid_link': "/baike/" } return render_template('data.html', q=search_key, searchForm=searchForm, **context) return redirect('home.index') @baike.route('/<uid>') def baikeSd(uid): base_path = os.path.abspath('app/templates/s_d/') old_file = os.listdir(base_path)[0] old_path = os.path.join(base_path, old_file) file_path = os.path.abspath('app/templates/s_d/{}.html'.format(uid)) if not os.path.exists(file_path): log_v.debug("[-] File does not exist, renaming !!!") os.rename(old_path, file_path) match_data = baike_es.id_get_doc(uid=uid) return render_template('s_d/{}.html'.format(uid), match_data=match_data)
可以看到我们成功的将 elasticSearch 类初始化并且进行了数据搜索。
我们使用了 Flask 的分页插件进行分页并进行了单页数量的限制,根据 Uid 来跳转到详情页中。
细心的小伙伴会发现我这里用了个小技巧
@baike.route('/<uid>') def baikeSd(uid): base_path = os.path.abspath('app/templates/s_d/') old_file = os.listdir(base_path)[0] old_path = os.path.join(base_path, old_file) file_path = os.path.abspath('app/templates/s_d/{}.html'.format(uid)) if not os.path.exists(file_path): log_v.debug("[-] File does not exist, renaming !!!") os.rename(old_path, file_path) match_data = baike_es.id_get_doc(uid=uid) return render_template('s_d/{}.html'.format(uid), match_data=match_data)
以此来保证存放详情页面的模板中始终只保留一个 html 文件。

项目启动
一如既往的采用 flask_script 作为项目的启动方案,确实方便。
# coding:utf8 from app import app from flask_script import Manager, Server manage = Manager(app) # 启动命令 manage.add_command("runserver", Server(use_debugger=True)) if __name__ == "__main__": manage.run()
黑窗口键入
python manage.py runserver
就可以启动项目,默认端口 5000,访问 http://127.0.0.1:5000
使用gunicorn启动
pip install gunicorn
#encoding:utf-8 import multiprocessing from gevent import monkey monkey.patch_all() # 并行工作进程数 workers = multiprocessing.cpu_count() * 2 + 1 debug = True reload = True # 自动重新加载 loglevel = 'debug' # 指定每个工作者的线程数 threads = 2 # 转发为监听端口8000 bind = '0.0.0.0:5001' # 设置守护进程,将进程交给supervisor管理 daemon = 'false' # 工作模式协程 worker_class = 'gevent' # 设置最大并发量 worker_connections = 2000 # 设置进程文件目录 pidfile = 'log/gunicorn.pid' logfile = 'log/debug.log' # 设置访问日志和错误信息日志路径 accesslog = 'log/gunicorn_acess.log' errorlog = 'log/gunicorn_error.log'
利用配置文件来启动 gunicorn 服务器
gunicorn -c gconfig.py manage:app
项目截图
위 내용은 Flask를 사용하여 ES 검색 엔진을 구축하는 방법을 단계별로 가르칩니다(실용).의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

Python과 C는 메모리 관리 및 제어에 상당한 차이가 있습니다. 1. Python은 참조 계산 및 쓰레기 수집을 기반으로 자동 메모리 관리를 사용하여 프로그래머의 작업을 단순화합니다. 2.C는 메모리 수동 관리가 필요하므로 더 많은 제어를 제공하지만 복잡성과 오류 위험을 증가시킵니다. 선택할 언어는 프로젝트 요구 사항 및 팀 기술 스택을 기반으로해야합니다.

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

Python 또는 C를 선택할 것인지 프로젝트 요구 사항에 따라 다릅니다. 1) Python은 간결한 구문 및 풍부한 라이브러리로 인해 빠른 개발, 데이터 과학 및 스크립팅에 적합합니다. 2) C는 컴파일 및 수동 메모리 관리로 인해 시스템 프로그래밍 및 게임 개발과 같은 고성능 및 기본 제어가 필요한 시나리오에 적합합니다.

Python은 데이터 과학 및 기계 학습에 널리 사용되며 주로 단순성과 강력한 라이브러리 생태계에 의존합니다. 1) 팬더는 데이터 처리 및 분석에 사용되며, 2) Numpy는 효율적인 수치 계산을 제공하며 3) Scikit-Learn은 기계 학습 모델 구성 및 최적화에 사용되며 이러한 라이브러리는 Python을 데이터 과학 및 기계 학습에 이상적인 도구로 만듭니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

드림위버 CS6
시각적 웹 개발 도구
