찾다
기술 주변기기일체 포함BLIP-2와 InstructBLIP이 확실히 상위 3위 안에 들었습니다! 12개 주요 모델, 16개 목록, '다중 모드 대형 언어 모델' 종합 평가

MLLM(다중 모드 대형 언어 모델)은 LLM의 풍부한 지식 보유와 강력한 추론 및 일반화 기능을 활용하여 다중 모드 문제를 해결합니다. 그림 보기 및 쓰기, 그림 보기 및 코드 작성과 같은 몇 가지 놀라운 기능이 등장했습니다.

그러나 이러한 사례만으로는 MLLM의 성과를 충분히 반영하기 어렵고, MLLM에 대한 종합적인 평가가 아직 부족합니다.

이를 위해 Tencent Youtu Lab과 Xiamen University는 새로 구축된 평가 벤치마크 MM에서 처음으로 기존 오픈 소스 MLLM 모델 12개에 대한 종합적인 정량 평가를 실시하고 인식 및 인지 전체 목록을 포함한 16개의 순위를 발표했습니다. 및 14개의 하위 목록:

BLIP-2와 InstructBLIP이 확실히 상위 3위 안에 들었습니다! 12개 주요 모델, 16개 목록, 다중 모드 대형 언어 모델 종합 평가

문서 링크: https://arxiv.org/pdf/2306.13394.pdf

프로젝트 링크: https://github.com/BradyFU/Awesome -Multimodal- Large-Language-Models/tree/Evaluation

기존 MLLM의 정량적 평가 방법은 크게 세 가지로 나누어지는데, 모두 성능을 완전히 반영하기 어려운 한계점을 갖고 있습니다.

첫 번째 범주의 방법은 이미지 캡션 및 VQA(Visual Question Answering) 데이터 세트와 같은 기존 공개 데이터 세트에서 평가됩니다.

그러나 한편으로는 이러한 기존 데이터 세트가 MLLM의 새로운 새로운 기능을 반영하지 못할 수도 있습니다. 반면에 대규모 모델 시대의 훈련 세트는 더 이상 통합되지 않기 때문에 이러한 기능을 보장하기 어렵습니다. 평가 데이터 세트는 다른 MLLM에서 훈련되지 않았습니다.

두 번째 방법은 공개 평가를 위해 새로운 데이터를 수집하는 것인데, 이러한 데이터는 공개되지 않거나 [1] 숫자가 너무 적습니다(사진 50장만) [2].

세 번째 방법은 대상 환각[3] 또는 적대적 견고성[4]과 같은 MLLM의 특정 측면에 초점을 맞추며 완전히 평가할 수 없습니다.

MLLM의 급속한 발전에 맞춰 종합적인 평가 벤치마크가 시급합니다. 연구자들은 보편적 종합 평가 벤치마크가 다음과 같은 특징을 가져야 한다고 믿습니다.

(1) 지각 및 인지 능력을 포함하여 최대한 많은 범위를 포괄해야 합니다. 전자는 사물의 존재, 수량, 위치, 색상 등을 포함하여 사물을 식별하는 것을 말합니다. 후자는 감각 정보와 지식을 LLM에 통합하여 보다 복잡한 추론을 수행하는 것을 의미합니다. 전자가 후자의 기초이다.

(2) 데이터 또는 주석은 데이터 유출 위험을 줄이기 위해 기존 공개 데이터 세트를 최대한 사용하지 않아야 합니다.

(3) 지침은 최대한 간결해야 하며 인간의 인지 습관과 일치해야 합니다. 다양한 지침 설계는 모델의 출력에 큰 영향을 미칠 수 있지만 모든 모델은 공정성을 보장하기 위해 통일되고 간결한 지침에 따라 평가됩니다. 좋은 MLLM 모델은 즉각적인 엔지니어링에 빠지지 않도록 간결한 지침으로 일반화할 수 있는 능력이 있어야 합니다.

(4) 이 간결한 지시에 따른 MLLM의 출력은 정량적 통계에 직관적이고 편리해야 합니다. MLLM의 개방형 답변은 정량적 통계에 큰 도전을 제기합니다. 기존 방법은 GPT나 수동 채점을 사용하는 경향이 있으나 부정확성과 주관성의 문제에 직면할 수 있습니다.

BLIP-2와 InstructBLIP이 확실히 상위 3위 안에 들었습니다! 12개 주요 모델, 16개 목록, 다중 모드 대형 언어 모델 종합 평가

그림 1. MME 평가 벤치마크 예시. 각 그림은 두 가지 질문에 해당하며, 대답은 각각 예[Y]와 아니오[N]입니다. 질문에 "예 또는 아니오로 대답해 주세요"라는 질문을 더해 명령을 구성합니다.

위의 이유로 위의 네 가지 특성을 동시에 갖는 새로운 MLLM 평가 벤치마크 MME가 구성되었습니다.

1 MME는 지각 능력과 인지 능력을 동시에 평가합니다. OCR 외에도 감지 기능에는 대략적이고 세밀한 대상 인식이 포함됩니다. 전자는 물체의 존재 여부, 수량, 위치 및 색상을 식별합니다. 후자는 영화 포스터, 유명 인사, 장면, 명소 및 예술 작품을 식별합니다. 인지 능력에는 상식 추론, 수치 계산, 텍스트 번역 및 코드 추론이 포함됩니다. 그림 1에 표시된 것처럼 하위 작업의 총 개수는 14개에 이릅니다.

2. MME의 모든 명령-응답 쌍은 수동으로 구성됩니다. 공개적으로 사용 가능한 몇 가지 데이터 세트의 경우 원래 주석에 의존하지 않고 해당 이미지만 사용되었습니다. 동시에 연구자들은 수동 사진 촬영 및 이미지 생성을 통해 데이터 수집에 최선을 다합니다.

3. MME 지침은 프롬프트 엔지니어링이 모델 출력에 미치는 영향을 피하기 위해 최대한 간결하게 설계되었습니다. 연구원들은 좋은 MLLM은 모든 모델에 공평한 간결하고 자주 사용되는 지침을 일반화해야 한다고 반복합니다. 각 하위 작업에 대한 지침은 그림 1에 나와 있습니다.

4. "예 또는 아니오로 대답해 주세요"라는 명령 설계 덕분에 모델의 "예" 또는 "아니요" 출력을 기반으로 정량적 통계를 쉽게 수행할 수 있습니다. 연구자들이 객관식 질문에 대한 지침을 설계하려고 시도했지만 현재의 MLLM이 여전히 더 복잡한 지침을 따르기가 어렵다는 점은 주목할 가치가 있습니다.

연구원들은 BLIP-2 [5], LLaVA [6], MiniGPT-4 [7], mPLUG-Owl [2], LLaMA-Adapter-v2 [8 ], Otter [9], Multimodal-GPT [10], InstructBLIP [11], VisualGLM-6B [12], PandaGPT [13], ImageBind-LLM [14] 및 LaVIN [15].

그 중에는 Accuracy, Accuracy+, Score 등 세 가지 통계 지표가 있습니다. 각 작업에 대해 정확도는 질문 통계를 기반으로 하고, 정확도+는 그림 통계를 기반으로 하며(그림에 해당하는 두 질문 모두 올바르게 답해야 함), 점수는 정확도와 정확도+의 합입니다.

지각 총점은 10개의 지각 하위 작업 점수의 합이고, 인지 총점은 4개의 인지 작업 점수의 합입니다. 자세한 내용은 프로젝트 링크를 참조하세요.

14개 하위 작업에 대한 12개 모델의 테스트 비교는 그림 2에 나와 있습니다.

BLIP-2와 InstructBLIP이 확실히 상위 3위 안에 들었습니다! 12개 주요 모델, 16개 목록, 다중 모드 대형 언어 모델 종합 평가

그림 2. 14개 하위 작업에 대한 12개 모델 비교. 각 하위 작업의 총점은 200점입니다.

지각 및 인지 카테고리 전체 목록과 14개 하위 작업 목록 등 총 16개 목록도 공개되었습니다. 두 개의 전체 목록은 각각 그림 3과 4에 나와 있습니다. BLIP-2와 InstructBLIP이 두 목록 모두에서 상위 3개 안에 남아 있다는 점은 주목할 가치가 있습니다.

BLIP-2와 InstructBLIP이 확실히 상위 3위 안에 들었습니다! 12개 주요 모델, 16개 목록, 다중 모드 대형 언어 모델 종합 평가Pictures

그림 3. 지각 작업의 전체 목록

BLIP-2와 InstructBLIP이 확실히 상위 3위 안에 들었습니다! 12개 주요 모델, 16개 목록, 다중 모드 대형 언어 모델 종합 평가

그림 4. 인지 작업의 전체 목록

BLIP-2와 InstructBLIP이 확실히 상위 3위 안에 들었습니다! 12개 주요 모델, 16개 목록, 다중 모드 대형 언어 모델 종합 평가

그림 5. 모든 목록

인 또한 연구원들은 후속 모델 최적화에 대한 지침을 제공하기 위해 그림 6과 같이 실험에서 MLLM 모델에 의해 노출된 몇 가지 일반적인 문제를 요약했습니다.

BLIP-2와 InstructBLIP이 확실히 상위 3위 안에 들었습니다! 12개 주요 모델, 16개 목록, 다중 모드 대형 언어 모델 종합 평가Pictures

그림 6. MLLM이 노출한 일반적인 문제. [Y]/[N]은 실제 대답이 예/아니요임을 의미합니다. [R]은 MLLM이 생성한 답변입니다.

첫 번째 문제는 지침을 따르지 않는 것입니다.

매우 간결한 지침 설계가 채택되었지만 지침을 따르기보다는 질문에 자유롭게 답변하는 MLLM이 여전히 있습니다.

그림 6의 첫 번째 줄에 표시된 것처럼 명령에는 "예 또는 아니요로 대답해 주세요"라고 명시되어 있지만 MLLM은 선언적 답변만 제공했습니다. 답변 시작 부분에 "예" 또는 "아니요"가 표시되지 않으면 답변이 잘못된 것으로 판단됩니다. 좋은 MLLM은 특히 명령어를 미세 조정한 후에 이러한 간단한 명령어를 일반화할 수 있어야 합니다.

두 번째 문제는 인식 부족입니다.

그림 6의 두 번째 행과 같이 MLLM이 첫 번째 그림의 바나나 개수와 두 번째 그림의 개수를 잘못 식별하여 오답이 나왔습니다. 연구자들은 또한 동일한 그림에 대해 단 한 단어만 다른 두 가지 지시 사항이 완전히 다른 지각 결과를 가져오기 때문에 지각 성능이 지시 사항 변경에 의해 쉽게 영향을 받는다는 사실을 발견했습니다.

세 번째 문제는 추론 능력이 부족하다는 것입니다.

그림 6의 세 번째 줄에 표시된 것처럼 MLLM은 첫 번째 사진이 사무실 공간이 아니라는 것을 이미 알고 있음에도 불구하고 "예"라고 오답을 줬다는 빨간색 텍스트를 통해 알 수 있습니다.

마찬가지로 두 번째 사진에서도 MLLM이 정확한 연산 결과를 계산했지만, 결국 역시 틀린 답을 내놨습니다. “단계적으로 생각해보자”와 같은 사고 연쇄 프롬프트를 추가하면 더 나은 결과를 얻을 수 있습니다. 이 분야에 대한 보다 심층적인 연구를 기대합니다.

네 번째 질문은 명령에 따른 물체 비전입니다. 그림 6의 네 번째 줄에 표시된 것처럼 명령에 그림에 존재하지 않는 개체가 포함되어 있으면 MLLM은 개체가 존재한다고 가정하고 최종적으로 "예"라고 대답합니다.

항상 "예"라고 대답하는 이러한 접근 방식은 정확도가 50%에 가깝고 정확도+가 0에 가깝습니다. 이는 대상 환각을 억제하는 것의 중요성을 보여주며 MLLM에서 생성된 답변의 신뢰성에 대해 더 깊이 생각해 볼 필요가 있음을 보여줍니다.

위 내용은 BLIP-2와 InstructBLIP이 확실히 상위 3위 안에 들었습니다! 12개 주요 모델, 16개 목록, '다중 모드 대형 언어 모델' 종합 평가의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 51CTO.COM에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
외삽에 대한 포괄적 인 가이드외삽에 대한 포괄적 인 가이드Apr 15, 2025 am 11:38 AM

소개 매일 몇 주 만에 작물의 진행 상황을 관찰하는 농부가 있다고 가정합니다. 그는 성장률을보고 몇 주 안에 식물이 얼마나 키가 커질 수 있는지에 대해 숙고하기 시작합니다. Th

소프트 AI의 부상과 오늘날 비즈니스의 의미소프트 AI의 부상과 오늘날 비즈니스의 의미Apr 15, 2025 am 11:36 AM

Soft AI-대략적인 추론, 패턴 인식 및 유연한 의사 결정을 사용하여 구체적이고 좁은 작업을 수행하도록 설계된 AI 시스템으로 정의 된 것은 모호성을 수용하여 인간과 같은 사고를 모방하려고합니다. 그러나 이것이 바이러스의 의미는 무엇입니까?

AI 국경을위한 진화 보안 프레임 워크AI 국경을위한 진화 보안 프레임 워크Apr 15, 2025 am 11:34 AM

클라우드 컴퓨팅이 클라우드 네이티브 보안 도구로의 전환이 필요했기 때문에 AI는 AI의 고유 한 요구를 위해 특별히 설계된 새로운 유형의 보안 솔루션을 요구합니다. 클라우드 컴퓨팅 및 보안 수업의 상승이 배웠습니다 th

3 가지 방법 생성 AI 기업가를 증폭시킵니다 : 평균을 조심하십시오!3 가지 방법 생성 AI 기업가를 증폭시킵니다 : 평균을 조심하십시오!Apr 15, 2025 am 11:33 AM

기업가와 AI 및 생성 AI를 사용하여 비즈니스를 개선합니다. 동시에, 모든 기술과 마찬가지로 생성 AI를 기억하는 것이 중요합니다. 앰프는 앰프입니다. 엄격한 2024 연구 o

Andrew Ng의 모델 임베딩에 대한 새로운 단기 과정Andrew Ng의 모델 임베딩에 대한 새로운 단기 과정Apr 15, 2025 am 11:32 AM

임베딩 모델의 힘 잠금 해제 : Andrew Ng의 새로운 코스에 대한 깊은 다이빙 기계가 완벽한 정확도로 질문을 이해하고 응답하는 미래를 상상해보십시오. 이것은 공상 과학이 아닙니다. AI의 발전 덕분에 R이되었습니다

대형 언어 모델 (LLMS)에서 환각이 불가피합니까?대형 언어 모델 (LLMS)에서 환각이 불가피합니까?Apr 15, 2025 am 11:31 AM

대형 언어 모델 (LLM) 및 환각의 피할 수없는 문제 Chatgpt, Claude 및 Gemini와 같은 AI 모델을 사용했을 것입니다. 이들은 대규모 텍스트 데이터 세트에 대해 교육을받은 강력한 AI 시스템의 대형 언어 모델 (LLM)의 예입니다.

60% 문제 - AI 검색이 트래픽을 배출하는 방법60% 문제 - AI 검색이 트래픽을 배출하는 방법Apr 15, 2025 am 11:28 AM

최근의 연구에 따르면 AI 개요는 산업 및 검색 유형에 따라 유기 트래픽이 15-64% 감소 할 수 있습니다. 이러한 급격한 변화로 인해 마케팅 담당자는 디지털 가시성에 관한 전체 전략을 재고하게합니다. 새로운

AI R & D의 중심에 인간 번성을하는 MIT Media LabAI R & D의 중심에 인간 번성을하는 MIT Media LabApr 15, 2025 am 11:26 AM

Elon University의 Digital Future Center를 상상 한 최근 보고서는 거의 300 명의 글로벌 기술 전문가를 조사했습니다. 결과적인 보고서 인‘2035 년에 인간이되는 것’은 대부분 AI 시스템의 심화가 T에 대한 우려가 있다고 결론지었습니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
1 몇 달 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

안전한 시험 브라우저

안전한 시험 브라우저

안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)