찾다
기술 주변기기일체 포함BLIP-2와 InstructBLIP이 확실히 상위 3위 안에 들었습니다! 12개 주요 모델, 16개 목록, '다중 모드 대형 언어 모델' 종합 평가

MLLM(다중 모드 대형 언어 모델)은 LLM의 풍부한 지식 보유와 강력한 추론 및 일반화 기능을 활용하여 다중 모드 문제를 해결합니다. 그림 보기 및 쓰기, 그림 보기 및 코드 작성과 같은 몇 가지 놀라운 기능이 등장했습니다.

그러나 이러한 사례만으로는 MLLM의 성과를 충분히 반영하기 어렵고, MLLM에 대한 종합적인 평가가 아직 부족합니다.

이를 위해 Tencent Youtu Lab과 Xiamen University는 새로 구축된 평가 벤치마크 MM에서 처음으로 기존 오픈 소스 MLLM 모델 12개에 대한 종합적인 정량 평가를 실시하고 인식 및 인지 전체 목록을 포함한 16개의 순위를 발표했습니다. 및 14개의 하위 목록:

BLIP-2와 InstructBLIP이 확실히 상위 3위 안에 들었습니다! 12개 주요 모델, 16개 목록, 다중 모드 대형 언어 모델 종합 평가

문서 링크: https://arxiv.org/pdf/2306.13394.pdf

프로젝트 링크: https://github.com/BradyFU/Awesome -Multimodal- Large-Language-Models/tree/Evaluation

기존 MLLM의 정량적 평가 방법은 크게 세 가지로 나누어지는데, 모두 성능을 완전히 반영하기 어려운 한계점을 갖고 있습니다.

첫 번째 범주의 방법은 이미지 캡션 및 VQA(Visual Question Answering) 데이터 세트와 같은 기존 공개 데이터 세트에서 평가됩니다.

그러나 한편으로는 이러한 기존 데이터 세트가 MLLM의 새로운 새로운 기능을 반영하지 못할 수도 있습니다. 반면에 대규모 모델 시대의 훈련 세트는 더 이상 통합되지 않기 때문에 이러한 기능을 보장하기 어렵습니다. 평가 데이터 세트는 다른 MLLM에서 훈련되지 않았습니다.

두 번째 방법은 공개 평가를 위해 새로운 데이터를 수집하는 것인데, 이러한 데이터는 공개되지 않거나 [1] 숫자가 너무 적습니다(사진 50장만) [2].

세 번째 방법은 대상 환각[3] 또는 적대적 견고성[4]과 같은 MLLM의 특정 측면에 초점을 맞추며 완전히 평가할 수 없습니다.

MLLM의 급속한 발전에 맞춰 종합적인 평가 벤치마크가 시급합니다. 연구자들은 보편적 종합 평가 벤치마크가 다음과 같은 특징을 가져야 한다고 믿습니다.

(1) 지각 및 인지 능력을 포함하여 최대한 많은 범위를 포괄해야 합니다. 전자는 사물의 존재, 수량, 위치, 색상 등을 포함하여 사물을 식별하는 것을 말합니다. 후자는 감각 정보와 지식을 LLM에 통합하여 보다 복잡한 추론을 수행하는 것을 의미합니다. 전자가 후자의 기초이다.

(2) 데이터 또는 주석은 데이터 유출 위험을 줄이기 위해 기존 공개 데이터 세트를 최대한 사용하지 않아야 합니다.

(3) 지침은 최대한 간결해야 하며 인간의 인지 습관과 일치해야 합니다. 다양한 지침 설계는 모델의 출력에 큰 영향을 미칠 수 있지만 모든 모델은 공정성을 보장하기 위해 통일되고 간결한 지침에 따라 평가됩니다. 좋은 MLLM 모델은 즉각적인 엔지니어링에 빠지지 않도록 간결한 지침으로 일반화할 수 있는 능력이 있어야 합니다.

(4) 이 간결한 지시에 따른 MLLM의 출력은 정량적 통계에 직관적이고 편리해야 합니다. MLLM의 개방형 답변은 정량적 통계에 큰 도전을 제기합니다. 기존 방법은 GPT나 수동 채점을 사용하는 경향이 있으나 부정확성과 주관성의 문제에 직면할 수 있습니다.

BLIP-2와 InstructBLIP이 확실히 상위 3위 안에 들었습니다! 12개 주요 모델, 16개 목록, 다중 모드 대형 언어 모델 종합 평가

그림 1. MME 평가 벤치마크 예시. 각 그림은 두 가지 질문에 해당하며, 대답은 각각 예[Y]와 아니오[N]입니다. 질문에 "예 또는 아니오로 대답해 주세요"라는 질문을 더해 명령을 구성합니다.

위의 이유로 위의 네 가지 특성을 동시에 갖는 새로운 MLLM 평가 벤치마크 MME가 구성되었습니다.

1 MME는 지각 능력과 인지 능력을 동시에 평가합니다. OCR 외에도 감지 기능에는 대략적이고 세밀한 대상 인식이 포함됩니다. 전자는 물체의 존재 여부, 수량, 위치 및 색상을 식별합니다. 후자는 영화 포스터, 유명 인사, 장면, 명소 및 예술 작품을 식별합니다. 인지 능력에는 상식 추론, 수치 계산, 텍스트 번역 및 코드 추론이 포함됩니다. 그림 1에 표시된 것처럼 하위 작업의 총 개수는 14개에 이릅니다.

2. MME의 모든 명령-응답 쌍은 수동으로 구성됩니다. 공개적으로 사용 가능한 몇 가지 데이터 세트의 경우 원래 주석에 의존하지 않고 해당 이미지만 사용되었습니다. 동시에 연구자들은 수동 사진 촬영 및 이미지 생성을 통해 데이터 수집에 최선을 다합니다.

3. MME 지침은 프롬프트 엔지니어링이 모델 출력에 미치는 영향을 피하기 위해 최대한 간결하게 설계되었습니다. 연구원들은 좋은 MLLM은 모든 모델에 공평한 간결하고 자주 사용되는 지침을 일반화해야 한다고 반복합니다. 각 하위 작업에 대한 지침은 그림 1에 나와 있습니다.

4. "예 또는 아니오로 대답해 주세요"라는 명령 설계 덕분에 모델의 "예" 또는 "아니요" 출력을 기반으로 정량적 통계를 쉽게 수행할 수 있습니다. 연구자들이 객관식 질문에 대한 지침을 설계하려고 시도했지만 현재의 MLLM이 여전히 더 복잡한 지침을 따르기가 어렵다는 점은 주목할 가치가 있습니다.

연구원들은 BLIP-2 [5], LLaVA [6], MiniGPT-4 [7], mPLUG-Owl [2], LLaMA-Adapter-v2 [8 ], Otter [9], Multimodal-GPT [10], InstructBLIP [11], VisualGLM-6B [12], PandaGPT [13], ImageBind-LLM [14] 및 LaVIN [15].

그 중에는 Accuracy, Accuracy+, Score 등 세 가지 통계 지표가 있습니다. 각 작업에 대해 정확도는 질문 통계를 기반으로 하고, 정확도+는 그림 통계를 기반으로 하며(그림에 해당하는 두 질문 모두 올바르게 답해야 함), 점수는 정확도와 정확도+의 합입니다.

지각 총점은 10개의 지각 하위 작업 점수의 합이고, 인지 총점은 4개의 인지 작업 점수의 합입니다. 자세한 내용은 프로젝트 링크를 참조하세요.

14개 하위 작업에 대한 12개 모델의 테스트 비교는 그림 2에 나와 있습니다.

BLIP-2와 InstructBLIP이 확실히 상위 3위 안에 들었습니다! 12개 주요 모델, 16개 목록, 다중 모드 대형 언어 모델 종합 평가

그림 2. 14개 하위 작업에 대한 12개 모델 비교. 각 하위 작업의 총점은 200점입니다.

지각 및 인지 카테고리 전체 목록과 14개 하위 작업 목록 등 총 16개 목록도 공개되었습니다. 두 개의 전체 목록은 각각 그림 3과 4에 나와 있습니다. BLIP-2와 InstructBLIP이 두 목록 모두에서 상위 3개 안에 남아 있다는 점은 주목할 가치가 있습니다.

BLIP-2와 InstructBLIP이 확실히 상위 3위 안에 들었습니다! 12개 주요 모델, 16개 목록, 다중 모드 대형 언어 모델 종합 평가Pictures

그림 3. 지각 작업의 전체 목록

BLIP-2와 InstructBLIP이 확실히 상위 3위 안에 들었습니다! 12개 주요 모델, 16개 목록, 다중 모드 대형 언어 모델 종합 평가

그림 4. 인지 작업의 전체 목록

BLIP-2와 InstructBLIP이 확실히 상위 3위 안에 들었습니다! 12개 주요 모델, 16개 목록, 다중 모드 대형 언어 모델 종합 평가

그림 5. 모든 목록

인 또한 연구원들은 후속 모델 최적화에 대한 지침을 제공하기 위해 그림 6과 같이 실험에서 MLLM 모델에 의해 노출된 몇 가지 일반적인 문제를 요약했습니다.

BLIP-2와 InstructBLIP이 확실히 상위 3위 안에 들었습니다! 12개 주요 모델, 16개 목록, 다중 모드 대형 언어 모델 종합 평가Pictures

그림 6. MLLM이 노출한 일반적인 문제. [Y]/[N]은 실제 대답이 예/아니요임을 의미합니다. [R]은 MLLM이 생성한 답변입니다.

첫 번째 문제는 지침을 따르지 않는 것입니다.

매우 간결한 지침 설계가 채택되었지만 지침을 따르기보다는 질문에 자유롭게 답변하는 MLLM이 여전히 있습니다.

그림 6의 첫 번째 줄에 표시된 것처럼 명령에는 "예 또는 아니요로 대답해 주세요"라고 명시되어 있지만 MLLM은 선언적 답변만 제공했습니다. 답변 시작 부분에 "예" 또는 "아니요"가 표시되지 않으면 답변이 잘못된 것으로 판단됩니다. 좋은 MLLM은 특히 명령어를 미세 조정한 후에 이러한 간단한 명령어를 일반화할 수 있어야 합니다.

두 번째 문제는 인식 부족입니다.

그림 6의 두 번째 행과 같이 MLLM이 첫 번째 그림의 바나나 개수와 두 번째 그림의 개수를 잘못 식별하여 오답이 나왔습니다. 연구자들은 또한 동일한 그림에 대해 단 한 단어만 다른 두 가지 지시 사항이 완전히 다른 지각 결과를 가져오기 때문에 지각 성능이 지시 사항 변경에 의해 쉽게 영향을 받는다는 사실을 발견했습니다.

세 번째 문제는 추론 능력이 부족하다는 것입니다.

그림 6의 세 번째 줄에 표시된 것처럼 MLLM은 첫 번째 사진이 사무실 공간이 아니라는 것을 이미 알고 있음에도 불구하고 "예"라고 오답을 줬다는 빨간색 텍스트를 통해 알 수 있습니다.

마찬가지로 두 번째 사진에서도 MLLM이 정확한 연산 결과를 계산했지만, 결국 역시 틀린 답을 내놨습니다. “단계적으로 생각해보자”와 같은 사고 연쇄 프롬프트를 추가하면 더 나은 결과를 얻을 수 있습니다. 이 분야에 대한 보다 심층적인 연구를 기대합니다.

네 번째 질문은 명령에 따른 물체 비전입니다. 그림 6의 네 번째 줄에 표시된 것처럼 명령에 그림에 존재하지 않는 개체가 포함되어 있으면 MLLM은 개체가 존재한다고 가정하고 최종적으로 "예"라고 대답합니다.

항상 "예"라고 대답하는 이러한 접근 방식은 정확도가 50%에 가깝고 정확도+가 0에 가깝습니다. 이는 대상 환각을 억제하는 것의 중요성을 보여주며 MLLM에서 생성된 답변의 신뢰성에 대해 더 깊이 생각해 볼 필요가 있음을 보여줍니다.

위 내용은 BLIP-2와 InstructBLIP이 확실히 상위 3위 안에 들었습니다! 12개 주요 모델, 16개 목록, '다중 모드 대형 언어 모델' 종합 평가의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 51CTO.COM에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
chatgpt를 사용할 수 없습니다! 즉시 테스트 할 수있는 원인과 솔루션 설명 [최신 2025]chatgpt를 사용할 수 없습니다! 즉시 테스트 할 수있는 원인과 솔루션 설명 [최신 2025]May 14, 2025 am 05:04 AM

chatgpt에 액세스 할 수 없습니까? 이 기사는 다양한 실용적인 솔루션을 제공합니다! 많은 사용자가 매일 chatgpt를 사용할 때 액세스 할 수 없거나 느린 응답과 같은 문제가 발생할 수 있습니다. 이 기사는 다양한 상황에 따라 이러한 문제를 단계별로 해결하도록 안내합니다. Chatgpt의 접근성 및 예비 문제 해결의 원인 먼저 문제가 OpenAI 서버 측 또는 사용자의 네트워크 또는 장치 문제에 있는지 확인해야합니다. 문제 해결을 위해 아래 단계를 따르십시오. 1 단계 : OpenAI의 공식 상태를 확인하십시오 chatgpt 서비스가 정상적으로 실행 중인지 확인하려면 OpenAi 상태 페이지 (status.openai.com)를 방문하십시오. 빨간색 또는 노란색 알람이 표시되면 열린 것을 의미합니다.

ASI의 위험을 계산하는 것은 인간의 마음으로 시작합니다ASI의 위험을 계산하는 것은 인간의 마음으로 시작합니다May 14, 2025 am 05:02 AM

2025 년 5 월 10 일, MIT 물리학 자 Max Tegmark는 AI Labs가 인공 초 지능을 방출하기 전에 Oppenheimer의 삼위 일체 테스트 미적분학을 모방해야한다고 Guardian에게 말했다. “내 평가는 'Compton Constant', 인종이

Chatgpt에서 가사를 작성하고 작곡하는 방법에 대한 이해하기 쉬운 설명Chatgpt에서 가사를 작성하고 작곡하는 방법에 대한 이해하기 쉬운 설명May 14, 2025 am 05:01 AM

AI 음악 제작 기술은 매일 매일 변화하고 있습니다. 이 기사는 Chatgpt와 같은 AI 모델을 예로 사용하여 AI를 사용하여 음악 제작을 지원하고 실제 사례에 대해 설명하는 방법을 자세히 설명합니다. 우리는 Sunoai, Hugging Face의 AI Jukebox 및 Python 's Music21 Library를 통해 음악을 만드는 방법을 소개합니다. 이러한 기술을 통해 모든 사람은 독창적 인 음악을 쉽게 만들 수 있습니다. 그러나 AI 생성 컨텐츠의 저작권 문제는 무시할 수 없으며 사용할 때는 신중해야합니다. 음악 분야에서 AI의 무한한 가능성을 모색 해 봅시다! OpenAi의 최신 AI 에이전트 "OpenAi Deep Research"가 소개됩니다. [chatgpt] ope

chatgpt-4는 무엇입니까? 당신이 할 수있는 일, 가격 및 GPT-3.5의 차이에 대한 철저한 설명!chatgpt-4는 무엇입니까? 당신이 할 수있는 일, 가격 및 GPT-3.5의 차이에 대한 철저한 설명!May 14, 2025 am 05:00 AM

ChatGpt-4의 출현은 AI 응용 프로그램의 가능성을 크게 확장했습니다. GPT-3.5와 비교하여 ChatGpt-4는 상당히 개선되었습니다. 강력한 맥락 이해력이 있으며 이미지를 인식하고 생성 할 수도 있습니다. 그것은 보편적 인 AI 조수입니다. 비즈니스 효율성 향상 및 창출 지원과 같은 많은 분야에서 큰 잠재력을 보여주었습니다. 그러나 동시에, 우리는 또한 사용의 예방 조치에주의를 기울여야합니다. 이 기사에서는 ChatGpt-4의 특성을 자세히 설명하고 다양한 시나리오에 대한 효과적인 사용 방법을 소개합니다. 이 기사에는 최신 AI 기술을 최대한 활용하는 기술이 포함되어 있습니다. OpenAi의 최신 AI 에이전트, "OpenAi Deep Research"에 대한 자세한 내용은 아래 링크를 클릭하십시오.

chatgpt 앱을 사용하는 방법을 설명하십시오! 일본 지원 및 음성 대화 기능chatgpt 앱을 사용하는 방법을 설명하십시오! 일본 지원 및 음성 대화 기능May 14, 2025 am 04:59 AM

chatgpt 앱 : AI 조수와 함께 창의력을 발휘하십시오! 초보자 가이드 Chatgpt 앱은 쓰기, 번역 및 질문 답변을 포함하여 광범위한 작업을 처리하는 혁신적인 AI 어시스턴트입니다. 창의적인 활동과 정보 수집에 유용한 끝없는 가능성이있는 도구입니다. 이 기사에서는 초보자를위한 이해하기 쉬운 방법, ChatGpt 스마트 폰 앱을 설치하는 방법, 음성 입력 기능 및 플러그인과 같은 앱의 고유 한 기능 및 앱을 사용할 때 염두에 두는 포인트에 이르기까지 설명합니다. 또한 플러그인 제한 및 장치 간 구성 동기화를 자세히 살펴 보겠습니다.

중국어 버전의 Chatgpt를 어떻게 사용합니까? 등록 절차 및 수수료에 대한 설명중국어 버전의 Chatgpt를 어떻게 사용합니까? 등록 절차 및 수수료에 대한 설명May 14, 2025 am 04:56 AM

Chatgpt Chinese 버전 : 중국 AI 대화의 새로운 경험 잠금 해제 Chatgpt는 전 세계적으로 인기가 있습니다. 중국어 버전도 제공한다는 것을 알고 있습니까? 이 강력한 AI 도구는 일상적인 대화를 지원할뿐만 아니라 전문적인 콘텐츠를 처리하며 단순화되고 전통적인 중국어와 호환됩니다. 중국의 사용자이든 중국어를 배우는 친구이든 상관없이 혜택을 누릴 수 있습니다. 이 기사는 계정 설정, 중국 신속한 단어 입력, 필터 사용 및 다양한 패키지 선택을 포함하여 ChatGpt 중국어 버전을 사용하는 방법을 자세히 소개하고 잠재적 위험 및 응답 전략을 분석합니다. 또한 ChatGpt 중국어 버전을 다른 중국 AI 도구와 비교하여 장점과 응용 프로그램 시나리오를 더 잘 이해할 수 있도록 도와줍니다. Openai의 최신 AI 인텔리전스

5 AI 요원 신화 당신은 지금 믿음을 중단해야합니다.5 AI 요원 신화 당신은 지금 믿음을 중단해야합니다.May 14, 2025 am 04:54 AM

이것들은 생성 AI 분야의 다음 도약으로 생각 될 수 있으며, 이는 우리에게 Chatgpt 및 기타 대규모 모델 챗봇을 제공했습니다. 단순히 질문에 대답하거나 정보를 생성하는 대신, 우리를 대신하여 조치를 취할 수 있습니다.

Chatgpt를 사용하여 여러 계정을 만들고 관리하는 불법성에 대한 이해하기 쉬운 설명Chatgpt를 사용하여 여러 계정을 만들고 관리하는 불법성에 대한 이해하기 쉬운 설명May 14, 2025 am 04:50 AM

ChatGpt를 사용한 효율적인 다중 계정 관리 기술 | 비즈니스와 사생활 사용 방법에 대한 철저한 설명! Chatgpt는 다양한 상황에서 사용되지만 일부 사람들은 여러 계정 관리에 대해 걱정할 수 있습니다. 이 기사는 ChatGpt에 대한 여러 계정을 만드는 방법, 사용할 때 수행 할 작업 및 안전하고 효율적으로 작동하는 방법을 자세히 설명합니다. 또한 비즈니스와 개인 사용의 차이, OpenAI의 이용 약관을 준수하는 것과 같은 중요한 점을 다루며 여러 계정을 안전하게 활용하는 데 도움이되는 안내서를 제공합니다. Openai

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기

맨티스BT

맨티스BT

Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경