빅데이터 시대가 도래하면서 실시간 데이터를 처리하고 분석해야 하는 경우가 많습니다. 실시간 스트림 처리 기술은 고성능, 높은 확장성, 낮은 지연 시간으로 인해 대규모 실시간 데이터를 처리하는 주요 방법으로 자리 잡았습니다. 실시간 스트림 처리 기술에서 Kafka와 Flink는 공통 구성 요소이며 많은 기업 수준의 데이터 처리 시스템에서 널리 사용되었습니다. 이 기사에서는 실시간 스트림 처리를 위해 Beego에서 Kafka와 Flink를 사용하는 방법을 소개합니다.
1. Kafka 소개
Apache Kafka는 분산 스트림 처리 플랫폼입니다. 데이터를 스트림(스트리밍 데이터)으로 분리하고 여러 노드에 데이터를 분산함으로써 고성능, 고가용성, 높은 확장성 및 정확히 한 번 보장과 같은 일부 고급 기능을 제공합니다. Kafka의 주요 역할은 분산 시스템의 여러 구성 요소 간의 통신 문제와 안정적인 메시지 전송을 해결하는 데 사용할 수 있는 안정적인 메시징 시스템입니다.
2. Flink 소개
Flink는 이벤트 중심의 분산형 고성능 빅데이터 스트림 처리 프레임워크입니다. 스트림 및 일괄 처리를 지원하고, SQL과 유사한 쿼리 및 스트림 처리 기능을 갖추고 있으며, 구성성이 뛰어난 스트리밍 컴퓨팅을 지원하고, 풍부한 창 및 데이터 스토리지 지원을 제공합니다.
3. Beego의 Kafka
Beego에서 Kafka를 사용하는 것은 크게 Kafka 소비자와 Kafka 생산자의 두 부분으로 나뉩니다.
- Kafka Producer
Beego에서 Kafka Producer를 사용하면 Kafka 클러스터에 쉽게 데이터를 보낼 수 있습니다. 다음은 Beego에서 Kafka Producer를 사용하는 방법에 대한 예입니다.
import ( "github.com/Shopify/sarama" ) func main() { // 创建 kafka 生产者 producer, err := sarama.NewSyncProducer([]string{"localhost:9092"}, nil) if err != nil { // 处理错误情况 panic(err) } // 创建 Kafka 消息 msg := &sarama.ProducerMessage{ Topic: "test", Value: sarama.StringEncoder("Hello, World!"), } // 发送消息 partition, offset, err := producer.SendMessage(msg) if err != nil { // 处理错误情况 panic(err) } fmt.Printf("消息已发送到分区 %d 的偏移量 %d 中 ", partition, offset) // 关闭 Kafka 生产者 producer.Close() }
- Kafka Consumer
Beego에서 Kafka 소비자를 사용하면 Kafka 클러스터에서 쉽게 데이터를 얻을 수 있습니다. 다음은 Beego에서 Kafka 소비자를 사용하는 방법에 대한 예입니다.
import ( "github.com/Shopify/sarama" ) func main() { // 创建 kafka 消费者 consumer, err := sarama.NewConsumer([]string{"localhost:9092"}, nil) if err != nil { // 处理错误情况 panic(err) } // 订阅 Topic partitions, err := consumer.Partitions("test") if err != nil { // 处理错误情况 panic(err) } for _, partition := range partitions { // 从分区的开头读取数据 partitionConsumer, _ := consumer.ConsumePartition("test", partition, sarama.OffsetOldest) // 处理数据 go func(partitionConsumer sarama.PartitionConsumer) { for { select { case msg := <-partitionConsumer.Messages(): // 处理消息 fmt.Printf("收到消息: %v", string(msg.Value)) } } }(partitionConsumer) } // 关闭 Kafka 消费者 defer consumer.Close() }
4. Flink in Beego
Beego에서 Flink를 사용하면 Flink의 Java API를 통해 직접 수행할 수 있으며 전체 Java와 Go 간의 Cgo 상호작용을 통해 프로세스가 완료됩니다. 다음은 실시간 스트림 처리를 통해 각 소켓 텍스트 단어의 빈도가 계산되는 Flink의 간단한 예입니다. 이 예에서는 주어진 텍스트 데이터 스트림을 Flink로 읽은 다음 Flink의 연산자를 사용하여 데이터 스트림에 대해 작업하고 마지막으로 결과를 콘솔에 출력합니다.
- 소켓 텍스트 데이터 소스 만들기
import org.apache.flink.streaming.api.functions.source.SourceFunction; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.net.Socket; public class SocketTextStreamFunction implements SourceFunction<String> { private final String hostname; private final int port; public SocketTextStreamFunction(String hostname, int port) { this.hostname = hostname; this.port = port; } public void run(SourceContext<String> context) throws Exception { Socket socket = new Socket(hostname, port); BufferedReader reader = new BufferedReader(new InputStreamReader(socket.getInputStream())); String line; while ((line = reader.readLine()) != null) { context.collect(line); } reader.close(); socket.close(); } public void cancel() {} }
- 각 단어의 빈도 계산
import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.api.functions.windowing.WindowFunction; import org.apache.flink.streaming.api.windowing.time.Time; import org.apache.flink.streaming.api.windowing.windows.TimeWindow; import org.apache.flink.util.Collector; public class SocketTextStreamWordCount { public static void main(String[] args) throws Exception { String hostname = "localhost"; int port = 9999; final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 从 Socket 中读取数据流 DataStream<String> text = env.addSource(new SocketTextStreamFunction(hostname, port)); // 计算每个单词的出现频率 DataStream<Tuple2<String, Integer>> wordCounts = text .flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() { public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception { String[] words = value.toLowerCase().split("\W+"); for (String word : words) { out.collect(new Tuple2<String, Integer>(word, 1)); } } }) .keyBy(0) .timeWindow(Time.seconds(5)) .apply(new WindowFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple, TimeWindow>() { public void apply(Tuple key, TimeWindow window, Iterable<Tuple2<String, Integer>> input, Collector<Tuple2<String, Integer>> out) throws Exception { int sum = 0; for (Tuple2<String, Integer> t : input) { sum += t.f1; } out.collect(new Tuple2<String, Integer>((String) key.getField(0), sum)); } }); // 打印到控制台 wordCounts.print(); env.execute("Socket Text Stream Word Count"); } }
5. 결론
이 글에서는 실시간 스트림 처리를 위해 Beego에서 Kafka와 Flink를 사용하는 방법을 소개합니다. Kafka는 분산 시스템의 여러 구성 요소 간의 통신 문제와 안정적인 메시지 전송을 해결하기 위한 안정적인 메시징 시스템으로 사용될 수 있습니다. Flink는 이벤트 중심의 분산형 고성능 빅데이터 스트림 처리 프레임워크입니다. 실제 응용 프로그램에서는 대규모 실시간 데이터 처리 문제를 해결하기 위해 특정 요구 사항에 따라 Kafka 및 Flink와 같은 기술을 유연하게 사용할 수 있습니다.
위 내용은 Beego에서 Kafka 및 Flink를 사용한 실시간 스트림 처리의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

gohandlesinterfacesandtypeassertionsefectively, codeflexibleandrobustness.1) typeSertionsOncaLownallowRuntImeTypeChecking, asseengehapeInterfaceAndCircLetype.2) TypeStwitchEshandleMultipleTypesePesePesePesePesePese -pervariousShapesimplementing Gry

GO 언어 오류 처리는 오류와 오류를 통해 더욱 유연하고 읽을 수 있습니다. 1.Errors.is는 오류가 지정된 오류와 동일한 지 확인하는 데 사용되며 오류 체인의 처리에 적합합니다. 2. 오류. 오류 유형을 확인할 수있을뿐만 아니라 오류를 특정 유형으로 변환 할 수 있으며 오류 정보 추출에 편리합니다. 이러한 기능을 사용하면 오류 처리 로직을 단순화 할 수 있지만 오류 체인의 올바른 전달에주의를 기울이고 코드 복잡성을 방지하기 위해 과도한 의존성을 피하십시오.

TomakeGoApplicationSRUNFASTERONDERFISTING, 사용 프로파일 링 툴, leverageConcurrency, andManageMemoryEffice.1) usepprofforcpuandMemoryProfingToIndifyBottLenecks.2) UtizeGoroutinesandChannelStoparAllelizetAskSandimProvePercormance.3) 3)

GO'SFUTUREISBRIGHTWITHTRENTRENDIMPROVENTTOOLING, 제네릭, 클라우드-나비 탑 션, 퍼포먼스 엔지니즘 및 WebassemBlyIntegration, butchAllEngesIncludEmainingSimplicityAndIndimprovingErrorHandling.

GOROUTINESAREFUCTIONSORMETHODSTRUCHURNINGINGONO, ENABLEGINGEFICENDSTRUCHERTHENCERENCY.1) thearManagedBy 'sruntimeusingmultiplexing, 2) GoroutinesImprovePperformanceSytaskParallelizationAndeff

theinitfunctioningoistoinitializevariable, setupconfigurations, orperformnecessarysetupbeforethemainfunecutes.useinitecutes.useinitby : 1) placingItinyOUrCodetorUnaUtomalityBeforeMain, 2) KAIGITSHORTANDFOCUSEDONSIMPLETASKS, 3)

grointerfacesaremethodsignatures thattypesmustimplement, modularCode를 통해 polymorphism, modularCode.theyareimply에 만족하고, 유용한 ortoflexeApisandDecoupling, butrequeRecarefulusetoavoidRuntimeErrorsAndeAntorsAntafeTeAfer.

PANIC에서 복구로 이동하는 복구 () 함수를 사용하십시오. 구체적인 방법은 다음과 같습니다. 1) reygre ()를 사용하여 프로그램 충돌을 피하기 위해 연기 기능에서 공황을 포착하십시오. 2) 디버깅에 대한 자세한 오류 정보를 기록합니다. 3) 특정 상황에 따라 프로그램 실행을 재개할지 여부를 결정합니다. 4) 성능에 영향을 미치지 않도록주의해서 사용하십시오.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기
