인터넷과 빅데이터 시대의 도래로 점점 더 많은 데이터가 동적으로 생성되어 웹페이지에 표시되고 있으며, 이는 데이터 수집 및 처리에 새로운 과제를 안겨줍니다. 이때 웹 크롤러 기술이 탄생했다. 웹 크롤러 기술은 프로그램을 작성해 인터넷 상에서 자동으로 정보를 얻는 기술을 말한다. 강력한 프로그래밍 언어인 Python은 배우기 쉽고, 효율적이고, 사용하기 쉽다는 장점이 있으며, 웹 크롤러 개발에서 중요한 선택이 되었습니다.
이 글에서는 요청 모듈, 파싱 모듈, 저장 모듈 등 Python에서 일반적으로 사용되는 웹 크롤러 기술을 체계적으로 소개합니다.
1. 요청 모듈
요청 모듈은 브라우저를 시뮬레이션하여 요청을 보내고 필요한 페이지 콘텐츠를 얻을 수 있습니다. 일반적으로 사용되는 요청 모듈에는 urllib, Requests 및 Selenium이 포함됩니다.
- urllib
urllib는 Python에 포함된 HTTP 요청 모듈로, URL을 기반으로 네트워크에서 웹페이지 데이터를 얻을 수 있으며 URL 인코딩, 요청 헤더 수정, 게시, 쿠키 등의 기능을 지원합니다. 일반적으로 사용되는 함수로는 urllib.request.urlopen(), urllib.request.urlretrieve(), urllib.request.build_opener() 등이 있습니다.
urllib.request.urlopen() 함수를 통해 웹사이트의 소스 코드를 얻을 수 있습니다.
import urllib.request response = urllib.request.urlopen('http://www.example.com/') source_code = response.read().decode('utf-8') print(source_code)
- Requests
Requests는 urllib보다 사용하기 쉽고 간단하며 쿠키를 지원하는 Python 타사 라이브러리입니다. , POST, 프록시 및 기타 기능. 일반적으로 사용되는 함수에는 요청.get(), 요청.포스트(), 요청.요청() 등이 있습니다.
requests.get() 함수를 통해 응답 내용을 얻을 수 있습니다.
import requests response = requests.get('http://www.example.com/') source_code = response.text print(source_code)
- Selenium
Selenium은 웹 크롤러에서 브라우저를 시작하여 인간 작업을 시뮬레이션할 수 있습니다. JS에서 동적으로 생성된 페이지 데이터와 같은 Get 기능을 달성했습니다. 일반적으로 사용되는 함수에는 selenium.webdriver.Chrome(), selenium.webdriver.Firefox(), selenium.webdriver.PhantomJS() 등이 있습니다.
Selenium을 통해 웹페이지 소스 코드 가져오기:
from selenium import webdriver browser = webdriver.Chrome() # 打开Chrome浏览器 browser.get('http://www.example.com/') source_code = browser.page_source # 获取网页源代码 print(source_code)
2. 구문 분석 모듈
웹 페이지 소스 코드를 가져온 후 다음 단계는 파일을 구문 분석하는 것입니다. Python에서 일반적으로 사용되는 구문 분석 모듈에는 정규식, BeautifulSoup 및 PyQuery가 포함됩니다.
- 정규식
정규식은 패턴에 따라 문자열을 일치시키고 필요한 데이터를 빠르게 추출할 수 있는 마술적이고 강력한 도구입니다. Python의 re 모듈을 사용하여 정규식을 호출할 수 있습니다.
예를 들어 웹 페이지의 모든 링크를 추출합니다.
import re source_code = """ <!DOCTYPE html> <html> <head> <title>Example</title> </head> <body> <a href="http://www.example.com/">example</a> <a href="http://www.google.com/">google</a> </body> </html> """ pattern = re.compile('<a href="(.*?)">(.*?)</a>') # 匹配所有链接 results = re.findall(pattern, source_code) for result in results: print(result[0], result[1])
- BeautifulSoup
Beautiful Soup은 HTML 파일이나 XML 파일을 트리 구조로 구문 분석하여 HTML/XML 파일 데이터를 쉽게 얻을 수 있는 Python 라이브러리입니다. . 다양한 파서를 지원하며, 일반적으로 사용되는 파서는 Python의 내장 html.parser, lxml 및 html5lib입니다.
예를 들어 웹페이지의 모든 링크를 구문 분석합니다.
from bs4 import BeautifulSoup source_code = """ <!DOCTYPE html> <html> <head> <title>Example</title> </head> <body> <a href="http://www.example.com/">example</a> <a href="http://www.google.com/">google</a> </body> </html> """ soup = BeautifulSoup(source_code, 'html.parser') links = soup.find_all('a') for link in links: print(link.get('href'), link.string)
- PyQuery
PyQuery는 HTML 문서를 jQuery와 유사한 구조로 변환하는 jQuery와 유사한 Python 라이브러리이며 다음을 통해 웹페이지의 콘텐츠를 직접 얻을 수 있습니다. CSS 선택기 요소. lxml 라이브러리에 따라 다릅니다.
예를 들어 웹 페이지의 모든 링크를 구문 분석합니다.
from pyquery import PyQuery as pq source_code = """ <!DOCTYPE html> <html> <head> <title>Example</title> </head> <body> <a href="http://www.example.com/">example</a> <a href="http://www.google.com/">google</a> </body> </html> """ doc = pq(source_code) links = doc('a') for link in links: print(link.attrib['href'], link.text_content())
3. 저장 모듈
필요한 데이터를 얻은 후 다음 단계는 데이터를 로컬 또는 데이터베이스에 저장하는 것입니다. Python에서 일반적으로 사용되는 저장 모듈에는 파일 모듈, MySQLdb, pymongo 등이 포함됩니다.
- 파일 모듈
파일 모듈은 데이터를 로컬에 저장할 수 있습니다. 일반적으로 사용되는 파일 모듈에는 CSV, JSON, Excel 등이 있습니다. 그 중 CSV 모듈은 데이터를 CSV 파일에 쓸 수 있는 가장 일반적으로 사용되는 파일 모듈 중 하나입니다.
예를 들어, CSV 파일에 데이터를 씁니다.
import csv filename = 'example.csv' data = [['name', 'age', 'gender'], ['bob', 25, 'male'], ['alice', 22, 'female']] with open(filename, 'w', encoding='utf-8', newline='') as f: writer = csv.writer(f) for row in data: writer.writerow(row)
- MySQLdb
MySQLdb는 MySQL 데이터베이스에 연결하기 위한 Python용 라이브러리이며 트랜잭션 및 커서와 같은 여러 기능을 지원합니다.
예를 들어 MySQL 데이터베이스에 데이터를 저장합니다.
import MySQLdb conn = MySQLdb.connect(host='localhost', port=3306, user='root', passwd='password', db='example', charset='utf8') cursor = conn.cursor() data = [('bob', 25, 'male'), ('alice', 22, 'female')] sql = "INSERT INTO users (name, age, gender) VALUES (%s, %s, %s)" try: cursor.executemany(sql, data) conn.commit() except: conn.rollback() cursor.close() conn.close()
- pymongo
pymongo는 MongoDB 데이터베이스에 연결하기 위한 Python용 라이브러리로 추가, 삭제, 수정 및 쿼리와 같은 다양한 작업을 지원합니다. .
예를 들어 MongoDB 데이터베이스에 데이터를 저장합니다:
import pymongo client = pymongo.MongoClient('mongodb://localhost:27017/') db = client['example'] collection = db['users'] data = [{'name': 'bob', 'age': 25, 'gender': 'male'}, {'name': 'alice', 'age': 22, 'gender': 'female'}] collection.insert_many(data)
IV. 요약
Python의 웹 크롤러 기술에는 요청 모듈, 구문 분석 모듈 및 저장 모듈이 포함되며, 그 중 요청 모듈은 웹 크롤러의 핵심입니다. 파싱 모듈은 데이터를 얻는 중요한 채널이며, 저장 모듈은 데이터를 유지하는 유일한 방법입니다. Python은 웹 크롤러 개발에서 배우기 쉽고 효율적이며 사용하기 쉽다는 장점과 크로스 플랫폼이라는 장점을 갖고 있어 웹 크롤러 개발에서 중요한 선택이 되었습니다.
위 내용은 Python 기반의 웹 크롤러 기술에 대한 자세한 설명의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

NumpyArraysareSentialplosplicationSefficationSefficientNumericalcomputationsanddatamanipulation. Theyarcrucialindatascience, MachineLearning, Physics, Engineering 및 Financeduetotheiribility에 대한 handlarge-scaledataefficivally. forexample, Infinancialanyaly

UseanArray.ArrayOveralistInpyThonWhendealingwithhomogeneousData, Performance-CriticalCode, OrinterFacingwithCcode.1) HomogeneousData : ArraysSaveMemorywithtypepletement.2) Performance-CriticalCode : arraysofferbetterporcomanceFornumericalOperations.3) Interf

아니요, NOTALLLISTOPERATIONARESUPPORTEDBYARRARES, andVICEVERSA.1) ArraySDONOTSUPPORTDYNAMICOPERATIONSLIKEPENDORINSERTWITHUTRESIGING, WHITHIMPACTSPERFORMANCE.2) ListSDONOTEECONSTANTTIMECOMPLEXITEFORDITITICCESSLIKEARRAYSDO.

ToaccesselementsInapyThonlist, 사용 인덱싱, 부정적인 인덱싱, 슬라이스, 오리 화.

Arraysinpython, 특히 비밀 복구를위한 ArecrucialInscientificcomputing.1) theaRearedFornumericalOperations, DataAnalysis 및 MachinELearning.2) Numpy'SimplementationIncensuressuressurations thanpythonlists.3) arraysenablequick

Pyenv, Venv 및 Anaconda를 사용하여 다양한 Python 버전을 관리 할 수 있습니다. 1) PYENV를 사용하여 여러 Python 버전을 관리합니다. Pyenv를 설치하고 글로벌 및 로컬 버전을 설정하십시오. 2) VENV를 사용하여 프로젝트 종속성을 분리하기 위해 가상 환경을 만듭니다. 3) Anaconda를 사용하여 데이터 과학 프로젝트에서 Python 버전을 관리하십시오. 4) 시스템 수준의 작업을 위해 시스템 파이썬을 유지하십시오. 이러한 도구와 전략을 통해 다양한 버전의 Python을 효과적으로 관리하여 프로젝트의 원활한 실행을 보장 할 수 있습니다.

Numpyarrayshaveseveraladvantagesstandardpythonarrays : 1) thearemuchfasterduetoc 기반 간증, 2) thearemorememory-refficient, 특히 withlargedatasets 및 3) wepferoptizedformationsformationstaticaloperations, 만들기, 만들기

어레이의 균질성이 성능에 미치는 영향은 이중입니다. 1) 균질성은 컴파일러가 메모리 액세스를 최적화하고 성능을 향상시킬 수 있습니다. 2) 그러나 유형 다양성을 제한하여 비 효율성으로 이어질 수 있습니다. 요컨대, 올바른 데이터 구조를 선택하는 것이 중요합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기
