SQL 플레이어로서 ElasticSearch를 접한 후 어떤 시나리오에서 bool 필터를 중첩해야 하는지, 언제 bool 쿼리가 필요한지, 언제 사용할 수 있는지 등 dsl의 이상한 쓰기 방식에 고민했습니다. 제거됩니다. 문제를 해결할 때 dsl을 직접 작성하는 것은 불가피하며 ES 오류가 자주 발생합니다.
이 문제를 해결하기 위해 ChatGPT에서 번역을 시켜봤는데 효과가 꽤 좋았습니다. 시나리오대로 살펴보자.
시나리오 1: 목록 퍼지 쿼리
B측 백엔드 시스템의 목록 페이지에서는 일반적으로 많은 필터 상자를 볼 수 있습니다. 제품 관리자는 종종 "더 나은 사용자 경험"이라는 필터 상자에 ID 및 이름별 퍼지 일치 기능을 넣습니다. SQL로 작성하면 매우 간단합니다.
select * from user where client_id = 123 anduser_id like '%张三%' or user_name like '%张三%';
MySQL에 저장하는 경우 client_id 인덱스를 추가하면 필터링되는 데이터의 양을 크게 줄일 수 있으며 성능도 크게 나쁘지 않습니다.
데이터 양이 너무 많으면 ES를 사용하세요. ChatGPT에 다음과 같이 물어볼 수 있습니다.
질문 시작:
ES 인덱스 이름 "user", 세 개의 필드
- user_id string
- user_name string
- client_id 정수
client_id = 123 및 (user_name = 'Zhang San' 또는 user_id = 'Zhang San') 조건으로 레코드를 쿼리하고 싶습니다. DSL을 어떻게 작성해야 합니까?
응답 시작:
다음 조건을 충족하는 "user" 인덱스의 레코드를 쿼리하려면 client_id = 123 및 (user_name = 'Zhang San' 또는 user_id = 'Zhang San')을 수행하면 됩니다. 달성하기 위해 용어 쿼리와 결합된 부울 쿼리를 사용합니다. 다음은 해당 DSL 쿼리의 예입니다.
GET /user/_search{"query": {"bool": {"filter": [{"term": {"client_id": 123}},{"bool": {"should": [{"term": {"user_name": "张三"}},{"term": {"user_id": "张三"}}]}}]}}}
이 쿼리에서는 부울 쿼리를 사용하여 지정된 기준이 문서를 필터링하는 데 사용되는지 확인합니다.
filter 절에는 두 가지 조건이 있습니다. 하나는 쿼리라는 용어를 사용하여 "client_id" 필드의 값이 123인 조건입니다. 두 번째 조건은 should 절이 포함된 중첩된 bool 쿼리입니다. should 절에는 두 개의 용어 쿼리가 포함되어 있습니다. 하나는 "user_name" 필드에 대한 것이고 다른 하나는 "user_id" 필드에 대한 것입니다. 두 쿼리 모두 값이 "Zhang San"인지 확인합니다. should 절을 사용하면 조건 중 하나라도 일치해야 함을 나타냅니다.
이 DSL 쿼리는 client_id가 123이고 사용자 이름이 "Zhang San"이거나 사용자 ID가 "Zhang San"인 문서 레코드를 반환합니다.
답변 끝:
ChatGPT는 답변을 제공했을 뿐만 아니라 설명도 제공했습니다. 비즈니스의 인덱스를 약간 수정하면 됩니다.
시나리오 2: 집계 결과를 기준으로 필터링
위의 사용자 테이블을 기반으로 처리된 작업 주문을 나타내는 ticket_id 필드를 추가하여 100개 이상의 작업 주문을 처리한 사용자를 찾고 싶습니다. SQL은 다음과 같이 작성할 수 있습니다.
select user_id, max(user_name) as user_name,count(ticket_id) as ticket_cnt from user where client_id = 123having count(ticket_id) > 100;
Ask ChatGPT:
질문 시작:
ES 인덱스 이름 "user", 다음 필드 포함:
- user_id string
- user_ 이름 string
- client_id int
- ticket_id
user_id에 따른 집계, count(ticket_id) > 100의 user_id, user_id
에 해당하는 user_name을 쿼리합니다. 답글 시작:
팔로우하려면 "user_id" 필드 집계, 조건 count(ticket_id) > 100을 충족하는 "user_id"를 쿼리하고 해당 "user_name"은 집계 쿼리에서 용어 집계 및 bucket_selector 파이프라인 집계를 사용하여 구현할 수 있습니다. 해당 DSL 쿼리 예는 다음과 같습니다.
GET /user/_search{"size": 0,"aggs": {"users": {"terms": {"field": "user_id","size": 10,"min_doc_count": 101// 设置最小文档数,只返回 count(ticket_id) > 100 的聚合结果},"aggs": {"user_name": {"terms": {"field": "user_name","size": 1}},"ticket_count": {"value_count": {"field": "ticket_id"}},"bucket_filter": {"bucket_selector": {"buckets_path": {"count": "ticket_count"},"script": "params.count > 100"// 仅保留 count(ticket_id) > 100 的聚合桶}}}}}}
在这个查询中,我们使用了 terms 聚合对 "user_id" 字段进行分组,并在聚合结果中嵌套了 user_name 字段的 terms 聚合和 ticket_id 字段的 value_count 聚合。
在 terms 聚合中,我们设置了 min_doc_count 参数为 101,以仅返回满足 count(ticket_id) > 100 的聚合桶。这样可以过滤掉不满足条件的聚合结果。
最终,我们使用 bucket_selector 管道聚合来进行桶过滤,仅保留满足条件 params.count > 100 的聚合桶。这样,最终的聚合结果中将只包含满足条件的 "user_id" 和对应的 "user_name"。
请注意,根据您的具体需求,您可能需要根据实际情况调整聚合查询中的参数和设置,如设置合适的 size 值来控制返回的聚合桶数量等。
回复结束。
场景三: 聚合以后取topK
向ChatGPT提问:
提问开始:
ES index 名字 "user",包含以下字段:
- user_id string
- user_name string
- client_id int
- ticket_id
我要查询处理ticket数量top10 的 user_id 以及对应的user_name
回复开始:
要查询处理 ticket 数量排名前 10 的 "user_id",以及对应的 "user_name",可以使用 terms 聚合和 top_hits 子聚合来实现。以下是相应的 DSL 查询示例:
GET /user/_search{"size": 0,"aggs": {"top_users": {"terms": {"field": "user_id","size": 10,"order": {"ticket_count": "desc"}},"aggs": {"user_name": {"terms": {"field": "user_name","size": 1}},"ticket_count": {"value_count": {"field": "ticket_id"}},"top_user_hits": {"top_hits": {"size": 1}}}}}}
在这个查询中,我们使用了 terms 聚合对 "user_id" 字段进行分组,并按照 "ticket_count" 字段的降序对分组结果进行排序。
在 terms 聚合中,我们设置了 size 参数为 10,以仅返回前 10 个处理 ticket 数量最多的 "user_id"。
在每个聚合桶中,我们还嵌套了 user_name 字段的 terms 聚合和 ticket_id 字段的 value_count 聚合,分别用于获取对应的 "user_name" 和计算 ticket 数量。
此外,我们使用了 top_hits 子聚合来获取每个聚合桶中的匹配文档的详细信息。在这里,我们设置了 size 参数为 1,以仅获取每个聚合桶中的一条文档信息。
最终,聚合查询的结果将包含处理 ticket 数量排名前 10 的 "user_id",对应的 "user_name",以及每个用户最新的一条文档信息。
请注意,根据实际情况,您可能需要根据具体需求调整聚合查询中的参数和设置,如设置合适的 size 值来控制返回的聚合桶数量,以及添加其他的聚合或过滤条件等。
回复结束。
本着快速出活/快速解决问题的心态,ChatGPT确实提升了工作效率。不过在解决需求之后,还是要补补课,了解下ElasticSearch的用法和工作机制。因为ChatGPT是语言模型,一旦逻辑复杂起来,ChatGPT就开始瞎说了。
위 내용은 ChatGPT를 사용하여 ElasticSearch dsl을 빠르게 시작하세요의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

소개 매일 몇 주 만에 작물의 진행 상황을 관찰하는 농부가 있다고 가정합니다. 그는 성장률을보고 몇 주 안에 식물이 얼마나 키가 커질 수 있는지에 대해 숙고하기 시작합니다. Th

Soft AI-대략적인 추론, 패턴 인식 및 유연한 의사 결정을 사용하여 구체적이고 좁은 작업을 수행하도록 설계된 AI 시스템으로 정의 된 것은 모호성을 수용하여 인간과 같은 사고를 모방하려고합니다. 그러나 이것이 바이러스의 의미는 무엇입니까?

클라우드 컴퓨팅이 클라우드 네이티브 보안 도구로의 전환이 필요했기 때문에 AI는 AI의 고유 한 요구를 위해 특별히 설계된 새로운 유형의 보안 솔루션을 요구합니다. 클라우드 컴퓨팅 및 보안 수업의 상승이 배웠습니다 th

기업가와 AI 및 생성 AI를 사용하여 비즈니스를 개선합니다. 동시에, 모든 기술과 마찬가지로 생성 AI를 기억하는 것이 중요합니다. 앰프는 앰프입니다. 엄격한 2024 연구 o

임베딩 모델의 힘 잠금 해제 : Andrew Ng의 새로운 코스에 대한 깊은 다이빙 기계가 완벽한 정확도로 질문을 이해하고 응답하는 미래를 상상해보십시오. 이것은 공상 과학이 아닙니다. AI의 발전 덕분에 R이되었습니다

대형 언어 모델 (LLM) 및 환각의 피할 수없는 문제 Chatgpt, Claude 및 Gemini와 같은 AI 모델을 사용했을 것입니다. 이들은 대규모 텍스트 데이터 세트에 대해 교육을받은 강력한 AI 시스템의 대형 언어 모델 (LLM)의 예입니다.

최근의 연구에 따르면 AI 개요는 산업 및 검색 유형에 따라 유기 트래픽이 15-64% 감소 할 수 있습니다. 이러한 급격한 변화로 인해 마케팅 담당자는 디지털 가시성에 관한 전체 전략을 재고하게합니다. 새로운

Elon University의 Digital Future Center를 상상 한 최근 보고서는 거의 300 명의 글로벌 기술 전문가를 조사했습니다. 결과적인 보고서 인‘2035 년에 인간이되는 것’은 대부분 AI 시스템의 심화가 T에 대한 우려가 있다고 결론지었습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

WebStorm Mac 버전
유용한 JavaScript 개발 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기
