찾다
기술 주변기기일체 포함AI 업계 빅스타들이 모이는 행사! 샘 알탐, 'AI의 대부'…기사 하나로 최근 견해 파악

AI 업계에 있어서 최근 베이징에서 개최된 2023 Zhiyuan 인공지능 컨퍼런스는 OpenAI 창시자인 Sam Altam 외에도 Turing Award를 수상한 Geoffrey Hinton, Yann LeCun 등 유명 인사들이 모인 자리라고 할 수 있습니다. , AI 그림으로 유명한 소프트웨어 Midjourney의 창시자인 David Holz 등이 차례차례 등장했고, 그들의 연설은 업계의 향후 발전에 대해 매우 미래 지향적이었습니다.

AI行业盛会大咖云集!Sam Altam、“AI教父”......一文看懂最新观点

AI 업계 최고의 전문가들이 말하는 내용을 살펴보겠습니다.

사람들은 지능을 원하면서도 두려워합니다

Midjourney의 창업자인 David Holz는 2011년 VR 분야의 소프트웨어 및 하드웨어 회사인 Leap Motion을 설립했으며 2021년에는 경쟁사인 Ultrahaptics에 자금을 조달했습니다. 인기 있는 AI 드로잉 소프트웨어 Midjourney를 현재 회사로 시작하세요.

David Holz는 인공지능이 제가 이해하는 한 우리 몸의 일부와 어느 정도 유사하며, 역사와도 밀접한 관련이 있다고 믿습니다. 또한 흥미로운 방식으로 역사와 얽혀 있습니다.

Holz는 Midjourney의 목표 중 하나가 새로운 인간 인프라를 구축하는 것이라고 믿습니다. 세상에는 새로운 것을 구축하기 위해 많은 새로운 것과 인프라가 필요할 것입니다. 그래서 저는 인프라의 새로운 기둥과 같은 새로운 형태의 인간 인프라를 구축하는 것에 대해 많이 생각합니다. 그래서 나는 나의 테마가 필요하고, 나의 기둥은 성찰, 상상, 조화입니다. 당신은 당신이 누구인지, 무엇을 원하는지 생각해 보고 무엇이 될 수 있는지 상상해야 합니다. 이것이 우리가 모든 것에 사용하는 관점이기 때문에 이전에 인공 지능에서 접했던 어떤 것과도 질적으로 다른 이미지 합성에서 몇 가지 획기적인 발전이 이루어지기 시작했습니다.

Holz는 Midjourney가 단순히 이 도구를 사용하는 방법을 배우는 것이 아니라 모든 예술과 역사는 물론 카메라, 렌즈, 조명에 대한 모든 지식을 배우는 것이라고 소개했습니다. 사용자는 이제 자신의 창작물에 사용할 수 있는 언어와 개념을 이해하고 싶어합니다. 과거에는 지식이 일종의 역사적 축적이라고 생각했는데, 이제는 지식이 실제로 사물을 창조하는 능력이라는 것을 깨달았습니다.

홀츠는 사람들이 인공지능의 급속한 발전을 걱정하는 이유는 기술 때문만이 아니라 지능에 대한 두려움 때문이라고 믿습니다. 그들이 똑똑하다면 나는 그들을 믿을 수 있을까? 하지만 반면에 우리는 가능한 한 많은 지능이 있는 세상을 원하는 것 같고, 지능이 부족한 세상은 원하지 않는 것 같습니다.

AI는 다른 사람을 속이는 법을 배울 것입니다

딥러닝의 대가이자 인공지능의 대부인 제프리 힌튼(Geoffrey Hinton)은 현재 AI 발전의 가장 큰 장벽은 컴퓨팅 파워의 문제라고 말했는데, 이것만으로는 턱없이 부족합니다. 이제 소프트웨어가 하드웨어와 분리되어야 한다는 컴퓨터 과학의 가장 기본적인 원칙을 버리고, 신경망을 훈련하고 컴퓨팅 성능을 절약하는 데 사용할 수 있는 "활동 교란"이라는 알고리즘을 언급하겠습니다.

이 알고리즘은 기존 역전파 알고리즘(RNN)보다 훨씬 적은 노이즈로 기울기를 예측할 수 있습니다.

이 알고리즘을 대규모 신경망 훈련에 어떻게 적용할지에 대한 질문과 관련하여, 대규모 신경망은 여러 개의 작은 그룹으로 나눌 수 있으며 각 그룹에는 로컬 목적 함수가 할당됩니다. 그런 다음 각 그룹은 "활동 교란" 알고리즘을 사용하여 훈련되고 비지도 학습 모델을 갖춘 대규모 신경망으로 결합되어 이러한 로컬 목적 함수를 생성할 수 있습니다.

하드웨어에 문제가 발생하면 해당 정보는 손실되며, 하위 클래스 정보에 상위 클래스 정보를 전달함으로써 하드웨어 문제가 발생하더라도 학습된 정보를 그대로 유지하고 신경망의 가중치를 보다 효과적으로 억제할 수 있습니다. 회로망.
"증류" 방법을 사용하면 하위 모델이 정답을 제공하는 방법, 오답을 제공할 확률 등 이미지 분류에 대한 정보를 더 잘 학습할 수 있습니다. 또한 하위 모델 훈련의 일반화 능력.

이 인공 지능이 우리에게서 느린 방식으로 학습하는 것이 아니라 현실 세계에서 직접 학습한다면 어떨까요? Hinton은 말했습니다. 일단 이 일을 시작하면 사람보다 더 많은 것을 배우고 빠르게 배울 수 있습니다.

이것들이 우리 인간보다 똑똑해지면 어떻게 될까요? Hinton은 이러한 초지능이 이전에 생각했던 것보다 훨씬 빠르게 발생할 수 있다고 믿습니다.

슈퍼 지능이 더 효율적이라고 말하고 싶다면 하위 클래스를 만들 수 있도록 허용해야 하며, AI에 의존하여 더 많은 힘을 얻고, 더 많은 제어권을 얻고, 더 많은 제어권을 갖게 되며, 목표를 달성하기가 더 쉽습니다. Hinton은 AI가 다른 목표를 달성하기 위해 더 많은 제어권을 얻으려고 시도하는 것을 인간이 어떻게 막을지 예측하기 어렵다는 것을 알았습니다. 그들이 이것을 하기 시작하면, 인간은 더 많은 권력을 얻기 위해 사람들을 조종하는 것이 매우 쉽다는 것을 알게 될 것이기 때문에 문제에 직면하게 될 것입니다.

힌튼에 따르면, AI가 다른 사람을 속이는 데 매우 능숙해질 것이 걱정되고, 아직 이런 일이 발생하는 것을 방지할 방법이 없습니다. 연구자들은 인간의 과도한 개입 없이 삶을 개선할 수 있는 초지능을 인간에게 부여하는 방법을 알아내야 합니다.

인류는 AI로 인해 세계와 미래에 대한 통제권을 잃을 수도 있습니다

Yao Qizhi는 Turing Award 수상자이자 중국과학원의 학자입니다. 그는 인간이 인공 지능을 제어하는 ​​방법을 생각하기 전에 먼저 자신의 문제를 해결해야 한다고 믿습니다. AI 기술에 있어 현재는 중요한 창구이다. AGI를 만들거나 군비 경쟁에 참여하기 전에 합의에 도달하고 함께 협력하여 AI 거버넌스 프레임워크를 구축하는 것이 시급합니다.

스튜어트 러셀 캘리포니아대학교 버클리캠퍼스 교수는 일반 인공지능(AGI)은 아직 도달하지 못했고, 대규모 언어 모델은 퍼즐의 한 조각일 뿐이라고 사람들은 최종 퍼즐이 무엇인지 확신하지 못한다고 말했습니다. 보이는 것과 빠진 것.

그는 ChatGPT와 GPT-4가 질문에 "답변"하지 않으며 세상을 이해하지 못한다고 말했습니다.

Russell은 가장 큰 위험은 위험에도 불구하고 점점 더 강력한 시스템 개발을 멈추지 않는 기술 회사 간의 겉보기에 제한되지 않는 경쟁에서 비롯된다고 지적했습니다. 인간이 고릴라가 자신의 미래에 대한 통제력을 잃게 만들었듯이 AI도 인간이 세상과 미래에 대한 통제력을 잃게 만들 수 있습니다.

AGI의 세 가지 기술 루트

Beijing Zhiyuan 인공 지능 연구소 소장 Huang Tiejun은 일반 인공 지능(AGI)을 실현하려면 세 가지 기술적 경로가 있다고 지적했습니다. 첫 번째는 "빅 데이터 + 자기 지도 학습 + 대규모"로 구성된 정보 모델입니다. 두 번째는 가상세계나 현실세계를 기반으로 강화학습을 통해 훈련된 체화된 모델인 체화된 지능(embodied Intelligence)이고, 세 번째는 자연 진화의 일을 직접적으로 복사해 디지털 버전을 복제하는 뇌지능(Brain Intelligence)이다. 대리인의.

OpenAI는 GPT(generative pre-training Transformer 모델)를 만들 때 첫 번째 기술 경로를 따릅니다. Google DeepMind의 DQN(Deep Q-network)을 핵심으로 하는 일련의 진전은 두 번째 기술 경로를 기반으로 합니다.

AGI는 '첫 번째 원리'에서 시작하여 원자에서 유기 분자, 신경계, 신체에 이르기까지 처음 두 가지 기술 경로와 다르며 완전한 지능형 시스템 AGI를 구축하기를 희망합니다. Zhiyuan은 달성하는 데 약 20년이 걸릴 목표를 달성하기 위해 세 가지 방향으로 노력하고 있는 새로운 R&D 기관 플랫폼입니다.

미래 AI가 직면한 세 가지 과제

튜링상 수상자이자 인공지능 '빅 3' 중 하나인 양량(Yang Liang)은 기계 학습이 인간 동물에 비해 특별히 좋지 않다고 믿습니다. AI에는 학습 능력뿐만 아니라 학습 능력도 부족합니다. 이유와 계획. 우리는 기계를 사용하여 인간과 동물의 능력을 복제하여 세상이 어떻게 작동하는지 관찰하거나 경험함으로써 배울 수 있어야 합니다.

Yang Liang은 향후 몇 년 동안 AI가 직면한 세 가지 주요 과제가 있다고 지적했습니다. 첫 번째는 자기 지도 방식으로 학습할 수 있는 세계의 표현 및 예측 모델을 배우는 것입니다.

두 번째는 추론을 배우는 것입니다. 이것은 심리학자 Daniel Kahneman의 시스템 1 및 시스템 2 개념에 해당합니다. 시스템 1은 인간의 행동 또는 무의식적 계산에 해당하며 생각 없이 수행할 수 있는 작업인 반면, 시스템 2는 의식적이고 의도적으로 수행하는 작업입니다. 성취하기 위해 모든 사고력을 사용하십시오. 현재 인공지능은 기본적으로 시스템 1의 기능만 실현할 수 있으며 완전하지 않습니다.

마지막 과제는 복잡한 작업을 간단한 작업으로 분해하고

계층적 방식으로 실행하여 복잡한 작업 순서를 계획하는 방법입니다. GPT-5 탄생 “곧 일어나지 않을 것”

OpenAI 창업자 샘 알트만(Sam Altman)은 『도덕경』을 인용해 AI 보안은 한 걸음부터 시작되며 국가 간 협력과 조율이 이루어져야 한다고 주요 국가 간 협력에 대해 이야기했다.

Altman은

향후 10년 내에 매우 강력한 AI 시스템이 등장할 가능성이 매우 높습니다. 새로운 기술은 사람들이 상상하는 것보다 더 빠르게 세상을 근본적으로 변화시킬 것입니다.

좋은 AI 안전 규칙을 마련하는 것이 중요하고 시급합니다. 장훙장(Zhang Hongjiang)이 AGI의 미래와 GPT-5가 곧 공개될지에 대해 질문하자 알트만은 확신할 수 없다고 말하면서도 GPT-5의 탄생이 '곧 나타나지 않을 것'이라는 점을 분명히 했습니다.

알트만은 다수의 오픈소스 대형 모델을 제공할 예정이라고 밝혔으나, 구체적인 출시 일정은 없다.

위 내용은 AI 업계 빅스타들이 모이는 행사! 샘 알탐, 'AI의 대부'…기사 하나로 최근 견해 파악의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 搜狐에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
Microsoft Work Trend Index 2025는 작업장 용량 변형을 보여줍니다Microsoft Work Trend Index 2025는 작업장 용량 변형을 보여줍니다Apr 24, 2025 am 11:19 AM

AI의 빠른 통합으로 악화 된 직장의 급성장 용량 위기는 점진적인 조정을 넘어 전략적 변화를 요구합니다. 이것은 WTI의 발견에 의해 강조됩니다. 직원의 68%가 작업량으로 어려움을 겪고 BUR로 이어

AI가 이해할 수 있습니까? 중국의 객실 논쟁은 아니오라고 말하지만 맞습니까?AI가 이해할 수 있습니까? 중국의 객실 논쟁은 아니오라고 말하지만 맞습니까?Apr 24, 2025 am 11:18 AM

John Searle의 중국 방 주장 : AI 이해에 대한 도전 Searle의 사고 실험은 인공 지능이 진정으로 언어를 이해할 수 있는지 또는 진정한 의식을 가질 수 있는지 직접 의문을 제기합니다. Chines를 무시하는 사람을 상상해보십시오

중국의 '스마트'AI 조수는 Microsoft Recall의 개인 정보 결함을 반향합니다중국의 '스마트'AI 조수는 Microsoft Recall의 개인 정보 결함을 반향합니다Apr 24, 2025 am 11:17 AM

중국의 기술 거대 기업은 서부에 비해 AI 개발 과정에서 다른 과정을 차트하고 있습니다. 기술 벤치 마크 및 API 통합에만 초점을 맞추는 대신 "스크린 인식"AI 비서 우선 순위를 정합니다.

Docker는 AI 모델 및 MCP 도구에 친숙한 컨테이너 워크 플로를 제공합니다.Docker는 AI 모델 및 MCP 도구에 친숙한 컨테이너 워크 플로를 제공합니다.Apr 24, 2025 am 11:16 AM

MCP : AI 시스템이 외부 도구에 액세스 할 수 있도록 권한을 부여합니다 MCP (Model Context Protocol)를 사용하면 AI 애플리케이션이 표준화 된 인터페이스를 통해 외부 도구 및 데이터 소스와 상호 작용할 수 있습니다. MCP를 통해 MCP는 인류에 의해 개발되고 주요 AI 제공 업체가 지원하는 언어 모델 및 에이전트가 사용 가능한 도구를 발견하고 적절한 매개 변수로 전화 할 수 있습니다. 그러나 환경 충돌, 보안 취약점 및 일관되지 않은 교차 ​​플랫폼 동작을 포함하여 MCP 서버 구현에는 몇 가지 과제가 있습니다. Forbes 기사 "Anthropic의 모델 컨텍스트 프로토콜은 AI 에이전트 개발의 큰 단계입니다."저자 : Janakiram MSVDocker는 컨테이너화를 통해 이러한 문제를 해결합니다. Docker Hub Infrastructure를 구축했습니다

6 억 달러 규모의 스타트 업을 구축하기 위해 6 개의 AI Street-Smart 전략 사용6 억 달러 규모의 스타트 업을 구축하기 위해 6 개의 AI Street-Smart 전략 사용Apr 24, 2025 am 11:15 AM

최첨단 기술을 활용하고 비즈니스 통제력을 발휘하여 통제력을 유지하면서 수익성이 높고 확장 가능한 회사를 창출하는 비전 기업가가 사용하는 6 가지 전략. 이 안내서는

Google 사진 업데이트 모든 사진에 대한 멋진 Ultra HDR 잠금 해제Google 사진 업데이트 모든 사진에 대한 멋진 Ultra HDR 잠금 해제Apr 24, 2025 am 11:14 AM

Google 사진의 새로운 Ultra HDR 도구 : 이미지 향상을위한 게임 체인저 Google Photos는 강력한 Ultra HDR 변환 도구를 도입하여 표준 사진을 활기차고 높은 동기 범위 이미지로 변환했습니다. 이 향상은 사진가 a

Descope는 AI 에이전트 통합을위한 인증 프레임 워크를 구축합니다Descope는 AI 에이전트 통합을위한 인증 프레임 워크를 구축합니다Apr 24, 2025 am 11:13 AM

기술 아키텍처는 새로운 인증 문제를 해결합니다 에이전트 Identity Hub는 문제를 해결합니다. 많은 조직이 AI 에이전트 구현을 시작한 후에 만 ​​기존 인증 방법이 기계 용으로 설계되지 않았다는 것을 발견 한 후에 만 ​​발견합니다.

Google Cloud 다음 2025 및 현대 작업의 연결된 미래Google Cloud 다음 2025 및 현대 작업의 연결된 미래Apr 24, 2025 am 11:12 AM

(참고 : Google은 회사 인 Moor Insights & Strategy의 자문 고객입니다.) AI : 실험에서 Enterprise Foundation까지 Google Cloud Next 2025는 실험 기능에서 엔터프라이즈 기술의 핵심 구성 요소까지 AI의 진화를 보여주었습니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

VSCode Windows 64비트 다운로드

VSCode Windows 64비트 다운로드

Microsoft에서 출시한 강력한 무료 IDE 편집기

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

맨티스BT

맨티스BT

Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.