K KNN(Nearest Neighbor Algorithm)은 분류 및 회귀에 사용할 수 있는 간단하고 효과적인 알고리즘입니다. 기본 아이디어는 서로 다른 특징 사이의 거리를 측정하여 샘플이 속한 카테고리를 식별하는 것입니다. 이번 글에서는 Python에서 KNN을 분류하는 방법을 살펴보겠습니다.
1. 데이터 세트 준비
먼저 데이터 세트를 준비해야 합니다. 이 예에서는 각각 4가지 특징(꽃받침 길이, 꽃받침 너비, 꽃잎 길이, 꽃잎 너비)이 있는 3가지 붓꽃(Setosa, Versicolour 및 Virginica)이 포함된 Iris 데이터세트를 사용합니다.
Pandas 라이브러리를 사용하여 데이터를 읽고 전처리합니다. 먼저 필요한 라이브러리를 가져와야 합니다.
import pandas as pd import numpy as np import matplotlib.pyplot as plt
그런 다음 데이터세트를 로드합니다.
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data" names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class'] dataset = pd.read_csv(url, names=names)
이제 데이터세트가 있으므로 탐색을 시작할 수 있습니다.
2. 데이터 시각화
분류에 앞서 데이터를 시각화하고 탐색해야 합니다. 우리는 각 특징의 히스토그램뿐만 아니라 다른 특징에 대한 각 특징의 산점도를 그릴 것입니다. 시각화를 위해 Matplotlib 라이브러리와 Seaborn 라이브러리를 사용할 수 있습니다.
기능 간 산점도:
import seaborn as sns sns.pairplot(dataset, hue="class")
이것에서 가능합니다 그림을 통해 붓꽃의 특성이 매우 다르다는 것을 알 수 있으며, 이는 분류의 기초가 됩니다.
각 기능의 히스토그램:
dataset.hist() plt.show()
이 사진에서 가능 데이터 세트의 각 기능은 정규화의 기초가 되는 서로 다른 분포를 가지고 있음을 알 수 있습니다.
3. 데이터 전처리
분류 전에 데이터 전처리가 필요합니다. 데이터 세트를 입력 특성과 출력 범주로 분할한 다음 특성 값을 0~1 범위로 확장할 수 있습니다.
먼저 데이터 세트를 입력 특성과 출력 범주로 나눕니다.
X = dataset.iloc[:, :-1].values y = dataset.iloc[:, 4].values
그런 다음 특성 값을 0에서 1 사이의 범위로 조정합니다.
from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X = scaler.fit_transform(X)
이제 전처리된 데이터 세트가 있습니다.
4. 데이터 세트 분할
분류 전에 데이터 세트를 훈련 세트와 테스트 세트로 분할해야 합니다. Scikit-learn 라이브러리의 train_test_split 함수를 사용하여 이를 수행할 수 있습니다.
from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
이렇게 하면 80:20 비율의 훈련 세트와 테스트 세트가 생성됩니다.
5. KNN 모델 학습
이제 KNN 모델 학습을 시작할 수 있습니다. 먼저 KNeighborsClassifier 클래스를 가져오고 인스턴스를 만든 다음 fit 함수를 사용하여 모델을 맞춥니다.
from sklearn.neighbors import KNeighborsClassifier classifier = KNeighborsClassifier(n_neighbors=5) classifier.fit(X_train, y_train)
이것은 KNN 분류기를 생성하고 훈련 세트를 사용하여 분류하도록 훈련시킵니다.
6. 예측
이제 KNN 모델을 사용하여 테스트 세트에 대한 예측을 할 수 있습니다. 예측 함수를 사용하여 예측을 하고 결과를 변수에 저장합니다.
y_pred = classifier.predict(X_test)
7. 모델 평가
마지막으로 모델을 평가하고 정확도를 결정해야 합니다. Scikit-learn 라이브러리의 conflict_matrix 및 classification_report 함수를 사용하여 모델의 정확성을 평가할 수 있습니다.
from sklearn.metrics import confusion_matrix, classification_report print(confusion_matrix(y_test, y_pred)) print(classification_report(y_test, y_pred))
이렇게 하면 모델의 정확성을 보여주는 혼동 행렬 및 분류 보고서가 출력됩니다.
요약
Python에서 분류를 위해 KNN 알고리즘을 사용하려면 다음 단계가 필요합니다.
1. 데이터 세트 준비
2. 데이터 사전 처리
4. KNN 모델 훈련
6. 예측
7. 모델 평가
KNN 알고리즘은 분류 및 회귀에 사용할 수 있는 간단하고 효과적인 알고리즘입니다. Python에서 분류를 위해 KNN 알고리즘을 사용하려면 위 단계를 따라야 합니다. 동시에 모델이 정확하게 분류할 수 있도록 데이터 시각화 및 전처리도 수행해야 합니다.
위 내용은 Python에서 분류를 위해 KNN 알고리즘을 사용하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python 또는 C를 선택하는 것은 프로젝트 요구 사항에 따라 다릅니다. 1) 빠른 개발, 데이터 처리 및 프로토 타입 설계가 필요한 경우 Python을 선택하십시오. 2) 고성능, 낮은 대기 시간 및 근접 하드웨어 제어가 필요한 경우 C를 선택하십시오.

매일 2 시간의 파이썬 학습을 투자하면 프로그래밍 기술을 효과적으로 향상시킬 수 있습니다. 1. 새로운 지식 배우기 : 문서를 읽거나 자습서를 시청하십시오. 2. 연습 : 코드를 작성하고 완전한 연습을합니다. 3. 검토 : 배운 내용을 통합하십시오. 4. 프로젝트 실무 : 실제 프로젝트에서 배운 것을 적용하십시오. 이러한 구조화 된 학습 계획은 파이썬을 체계적으로 마스터하고 경력 목표를 달성하는 데 도움이 될 수 있습니다.

2 시간 이내에 Python을 효율적으로 학습하는 방법 : 1. 기본 지식을 검토하고 Python 설치 및 기본 구문에 익숙한 지 확인하십시오. 2. 변수, 목록, 기능 등과 같은 파이썬의 핵심 개념을 이해합니다. 3. 예제를 사용하여 마스터 기본 및 고급 사용; 4. 일반적인 오류 및 디버깅 기술을 배우십시오. 5. 목록 이해력 사용 및 PEP8 스타일 안내서와 같은 성능 최적화 및 모범 사례를 적용합니다.

Python은 초보자 및 데이터 과학에 적합하며 C는 시스템 프로그래밍 및 게임 개발에 적합합니다. 1. 파이썬은 간단하고 사용하기 쉽고 데이터 과학 및 웹 개발에 적합합니다. 2.C는 게임 개발 및 시스템 프로그래밍에 적합한 고성능 및 제어를 제공합니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Python은 데이터 과학 및 빠른 개발에 더 적합한 반면 C는 고성능 및 시스템 프로그래밍에 더 적합합니다. 1. Python Syntax는 간결하고 학습하기 쉽고 데이터 처리 및 과학 컴퓨팅에 적합합니다. 2.C는 복잡한 구문을 가지고 있지만 성능이 뛰어나고 게임 개발 및 시스템 프로그래밍에 종종 사용됩니다.

파이썬을 배우기 위해 하루에 2 시간을 투자하는 것이 가능합니다. 1. 새로운 지식 배우기 : 목록 및 사전과 같은 1 시간 안에 새로운 개념을 배우십시오. 2. 연습 및 연습 : 1 시간을 사용하여 소규모 프로그램 작성과 같은 프로그래밍 연습을 수행하십시오. 합리적인 계획과 인내를 통해 짧은 시간에 Python의 핵심 개념을 마스터 할 수 있습니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

WebStorm Mac 버전
유용한 JavaScript 개발 도구

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.
