데이터의 양이 증가함에 따라 시계열 분석 기술은 데이터 분석 및 예측에 없어서는 안될 부분이 되었습니다. 시계열 분석은 데이터의 패턴과 추세를 밝혀내고 추세를 예측할 수 있습니다. Python은 시계열 분석을 수행하는 데에도 사용할 수 있는 널리 사용되는 프로그래밍 언어입니다. 이번 글에서는 Python의 시계열 분석 기법을 간략하게 소개하겠습니다.
Python의 시계열 분석은 크게 다음과 같은 측면으로 나뉩니다.
시계열 분석을 수행하기 전에 데이터를 읽고 정리하고 전처리해야 합니다. Python에서는 pandas 라이브러리의 read_csv() 함수를 사용하여 csv 파일을 읽고 dropna() 함수를 사용하여 누락된 값을 제거할 수 있습니다. 또한 다른 pandas 기능과 numpy 라이브러리를 사용하여 데이터 정리 및 처리를 완료할 수도 있습니다.
시각화는 데이터를 더 잘 이해하는 데 도움이 될 수 있습니다. Python에서는 matplotlib 및 seaborn 모듈을 사용하여 꺾은선형 차트, 산점도 및 히스토그램과 같은 시계열 차트를 그릴 수 있습니다. 또한 시계열 도표를 사용하여 추세, 계절성 및 주기성을 시각화할 수 있습니다.
Stationality는 시계열 분석의 기본 개념 중 하나입니다. 분석과 예측은 시계열이 고정된 경우에만 수행할 수 있습니다. Python에서는 ADF(Augmented Dickey-Fuller) 테스트, KPSS(Kwiatkowski-Phillips-Schmidt-Shin) 테스트 등과 같은 정상성 테스트 도구를 사용하여 시계열의 정상성을 테스트할 수 있습니다.
시계열은 일반적으로 추세, 계절성 및 무작위 변동 구성요소를 포함합니다. Python의 분해 기술을 사용하면 시계열을 이러한 기본 구성 요소로 분해하고 각 구성 요소를 분석할 수 있습니다. 일반적으로 사용되는 분해 기술에는 STL 분해, Holt-Winters 분해 등이 있습니다.
ARIMA(자동 회귀 통합 이동 평균) 모델은 시계열 분석에서 가장 일반적으로 사용되는 모델 중 하나입니다. ARIMA 모델은 시계열을 적합화하고 예측할 수 있습니다. Python에서는 피팅 및 예측을 위해 statsmodels 및 ARIMA 모델을 사용할 수 있습니다.
일부 시계열에는 계절 변화가 있을 수 있습니다. 이 경우 계절 자동 회귀 통합 이동 평균(SARIMA) 모델을 사용해야 합니다. SARIMA는 ARIMA 모델의 확장이며 계절성이 있는 시계열을 처리하는 데 사용할 수 있습니다. Python에서는 피팅 및 예측을 위해 statsmodels 및 SARIMAX 모델을 사용할 수 있습니다.
기존 시계열 모델 외에도 딥러닝 모델을 시계열 예측에도 사용할 수 있습니다. 그중 LSTM(Long Short-Term Memory)은 시계열 데이터를 처리하는 데 사용되는 순환 신경망으로, 장기 의존성과 노이즈를 더 잘 처리할 수 있습니다. Python에서는 시계열 예측을 위해 keras 및 LSTM 모델을 사용할 수 있습니다.
요약하자면 Python의 시계열 분석 기술에는 데이터 읽기, 정리 및 전처리, 시계열 시각화, 정상성 테스트, 시계열 분해, ARIMA 모델, SARIMA 모델 및 딥러닝 모델 등이 포함됩니다. 이러한 기술은 우리가 데이터를 더 잘 이해하고 더 정확한 예측과 결정을 내리는 데 도움이 될 수 있습니다.
위 내용은 Python의 시계열 분석 기술이란 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!