springboot+redis+mybatis plus를 통합하는 작은 데모
pom 파일
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.wlient</groupId> <artifactId>springboot_mq_redis</artifactId> <version>0.0.1-SNAPSHOT</version> <name>springboot_mq_redis</name> <description>Demo project for Spring Boot</description> <properties> <java.version>1.8</java.version> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding> <spring-boot.version>2.3.7.RELEASE</spring-boot.version> </properties> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-amqp</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>com.baomidou</groupId> <artifactId>mybatis-plus-boot-starter</artifactId> <version>3.4.2</version> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-devtools</artifactId> <scope>runtime</scope> <optional>true</optional> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <scope>runtime</scope> </dependency> <dependency> <groupId>org.projectlombok</groupId> <artifactId>lombok</artifactId> <optional>true</optional> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> <exclusions> <exclusion> <groupId>org.junit.vintage</groupId> <artifactId>junit-vintage-engine</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <scope>test</scope> </dependency> <dependency> <groupId>org.springframework.amqp</groupId> <artifactId>spring-rabbit-test</artifactId> <scope>test</scope> </dependency> <dependency> <groupId>org.aspectj</groupId> <artifactId>aspectjweaver</artifactId> <version>1.9.6</version> </dependency> <!--jedis--> <dependency> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> <version>3.2.0</version> </dependency> <!-- swagger --> <dependency> <groupId>com.github.xiaoymin</groupId> <artifactId>knife4j-spring-boot-starter</artifactId> <version>2.0.7</version> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifactId> <version>1.2.76</version> </dependency> </dependencies> <dependencyManagement> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-dependencies</artifactId> <version>${spring-boot.version}</version> <type>pom</type> <scope>import</scope> </dependency> </dependencies> </dependencyManagement> <build> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>3.8.1</version> <configuration> <source>1.8</source> <target>1.8</target> <encoding>UTF-8</encoding> </configuration> </plugin> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> <version>2.3.7.RELEASE</version> <configuration> <mainClass>com.wlient.springboot_mq_redis.SpringbootMqRedisApplication</mainClass> </configuration> <executions> <execution> <id>repackage</id> <goals> <goal>repackage</goal> </goals> </execution> </executions> </plugin> </plugins> </build> </project>
yaml 파일
spring: redis: host: 1.117.89.11 port: 6378 password: Terry123456. timeout: 60s database: 2 lettuce: pool: # 连接池中的最小空闲连接 min-idle: 0 # 连接池中的最大空闲连接 max-idle: 8 # 连接池的最大数据库连接数 max-active: 8 # #连接池最大阻塞等待时间(使用负值表示没有限制) max-wait: -1ms #spring cache 配置 cache: type: redis redis: # key过期时间 半小时 time-to-live: 1800000 #毫秒
CacheConfig
@Configuration public class CacheConfig { @Bean CacheManager cacheManager(RedisConnectionFactory connectionFactory) { RedisCacheConfiguration defaultCacheConfig = RedisCacheConfiguration.defaultCacheConfig(); //common信息缓存配置 RedisCacheConfiguration userCacheConfiguration = defaultCacheConfig // 设置 key为string序列化 .serializeKeysWith(RedisSerializationContext.SerializationPair.fromSerializer(new StringRedisSerializer())) // 设置value为json序列化 .serializeValuesWith(RedisSerializationContext.SerializationPair.fromSerializer(new GenericJackson2JsonRedisSerializer())).disableCachingNullValues(); Map<String, RedisCacheConfiguration> redisCacheConfigurationMap = new HashMap<>(); //entryTtl设置缓存失效时间,单位是秒 redisCacheConfigurationMap.put("common", userCacheConfiguration.entryTtl(Duration.ofSeconds(30))); //设置CacheManager的值序列化方式为JdkSerializationRedisSerializer,但其实RedisCacheConfiguration默认就是使用StringRedisSerializer序列化key,JdkSerializationRedisSerializer序列化value,所以以下注释代码为默认实现 //ClassLoader loader = this.getClass().getClassLoader(); //JdkSerializationRedisSerializer jdkSerializer = new JdkSerializationRedisSerializer(loader); //RedisSerializationContext.SerializationPair<Object> pair = RedisSerializationContext.SerializationPair.fromSerializer(jdkSerializer); //RedisCacheConfiguration defaultCacheConfig=RedisCacheConfiguration.defaultCacheConfig().serializeValuesWith(pair); Set<String> cacheNames = new HashSet<>(); cacheNames.add("common"); //初始化RedisCacheManager RedisCacheManager cacheManager = RedisCacheManager.builder(connectionFactory).cacheDefaults(defaultCacheConfig).initialCacheNames(cacheNames).withInitialCacheConfigurations(redisCacheConfigurationMap).build(); return cacheManager; } }
RedisConfig
package com.wlient.springboot_mq_redis.Configuar; import com.fasterxml.jackson.annotation.JsonAutoDetect; import com.fasterxml.jackson.annotation.PropertyAccessor; import com.fasterxml.jackson.databind.ObjectMapper; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.data.redis.connection.RedisConnectionFactory; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer; import org.springframework.data.redis.serializer.StringRedisSerializer; @Configuration public class RedisConfig { @Bean @SuppressWarnings("all") public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) { RedisTemplate<String, Object> template = new RedisTemplate<String, Object>(); template.setConnectionFactory(factory); Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class); ObjectMapper om = new ObjectMapper(); om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY); om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL); jackson2JsonRedisSerializer.setObjectMapper(om); StringRedisSerializer stringRedisSerializer = new StringRedisSerializer(); // key采用String的序列化方式 template.setKeySerializer(stringRedisSerializer); // hash的key也采用String的序列化方式 template.setHashKeySerializer(stringRedisSerializer); // value序列化方式采用jackson template.setValueSerializer(jackson2JsonRedisSerializer); // hash的value序列化方式采用jackson template.setHashValueSerializer(jackson2JsonRedisSerializer); template.afterPropertiesSet(); return template; } }
SpringCacheConfig
package com.wlient.springboot_mq_redis.Configuar; import org.springframework.boot.autoconfigure.cache.CacheProperties; import org.springframework.boot.context.properties.EnableConfigurationProperties; import org.springframework.cache.annotation.EnableCaching; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.data.redis.cache.RedisCacheConfiguration; import org.springframework.data.redis.serializer.RedisSerializationContext; import org.springframework.data.redis.serializer.RedisSerializer; /** * spring cache 配置 */ @EnableConfigurationProperties(CacheProperties.class) @Configuration @EnableCaching public class SpringCacheConfig { @Bean public RedisCacheConfiguration redisCacheConfiguration(CacheProperties cacheProperties) { RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig() .serializeKeysWith(RedisSerializationContext.SerializationPair.fromSerializer(RedisSerializer.string())) .serializeValuesWith(RedisSerializationContext.SerializationPair.fromSerializer(RedisSerializer.json())); CacheProperties.Redis redisProperties = cacheProperties.getRedis(); //将配置文件中所有的配置都生效 if (redisProperties.getTimeToLive() != null) { config = config.entryTtl(redisProperties.getTimeToLive()); } if (redisProperties.getKeyPrefix() != null) { config = config.prefixKeysWith(redisProperties.getKeyPrefix()); } if (!redisProperties.isCacheNullValues()) { config = config.disableCachingNullValues(); } if (!redisProperties.isUseKeyPrefix()) { config = config.disableKeyPrefix(); } return config; } }
RedisService
package com.wlient.springboot_mq_redis.service; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.stereotype.Service; import org.springframework.util.CollectionUtils; import javax.annotation.Resource; import java.util.Collection; import java.util.List; import java.util.Map; import java.util.Set; import java.util.concurrent.TimeUnit; @Service public class RedisService { @Resource private RedisTemplate<String, Object> redisTemplate; // =============================common============================ /** * 指定缓存失效时间 * @param key 键 * @param time 时间(秒) * @return */ public boolean expire(String key, long time) { try { if (time > 0) { redisTemplate.expire(key, time, TimeUnit.SECONDS); } return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 根据key 获取过期时间 * @param key 键 不能为null * @return 时间(秒) 返回0代表为永久有效 */ public long getExpire(String key) { return redisTemplate.getExpire(key, TimeUnit.SECONDS); } /** * 判断key是否存在 * @param key 键 * @return true 存在 false不存在 */ public boolean hasKey(String key) { try { return redisTemplate.hasKey(key); } catch (Exception e) { e.printStackTrace(); return false; } } /** * 删除缓存 * @param key 可以传一个值 或多个 */ @SuppressWarnings("unchecked") public void del(String... key) { if (key != null && key.length > 0) { if (key.length == 1) { redisTemplate.delete(key[0]); } else { redisTemplate.delete(CollectionUtils.arrayToList(key)); } } } // ============================String============================= /** * 普通缓存获取 * @param key 键 * @return 值 */ public Object get(String key) { return key == null ? null : redisTemplate.opsForValue().get(key); } /** * 普通缓存放入 * @param key 键 * @param value 值 * @return true成功 false失败 */ public boolean set(String key, Object value) { try { redisTemplate.opsForValue().set(key, value); return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 普通缓存放入并设置时间 * @param key 键 * @param value 值 * @param time 时间(秒) time要大于0 如果time小于等于0 将设置无限期 * @return true成功 false 失败 */ public boolean set(String key, Object value, long time) { try { if (time > 0) { redisTemplate.opsForValue().set(key, value, time, TimeUnit.SECONDS); } else { set(key, value); } return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 递增 * @param key 键 * @param delta 要增加几(大于0) * @return */ public long incr(String key, long delta) { if (delta < 0) { throw new RuntimeException("递增因子必须大于0"); } return redisTemplate.opsForValue().increment(key, delta); } /** * 递减 * @param key 键 * @param delta 要减少几(小于0) * @return */ public long decr(String key, long delta) { if (delta < 0) { throw new RuntimeException("递减因子必须大于0"); } return redisTemplate.opsForValue().increment(key, -delta); } // ================================Map================================= /** * HashGet * @param key 键 不能为null * @param item 项 不能为null * @return 值 */ public Object hget(String key, String item) { return redisTemplate.opsForHash().get(key, item); } /** * 获取hashKey对应的所有键值 * @param key 键 * @return 对应的多个键值 */ public Map<Object, Object> hmget(String key) { return redisTemplate.opsForHash().entries(key); } /** * HashSet * @param key 键 * @param map 对应多个键值 * @return true 成功 false 失败 */ public boolean hmset(String key, Map<String, Object> map) { try { redisTemplate.opsForHash().putAll(key, map); return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * HashSet 并设置时间 * @param key 键 * @param map 对应多个键值 * @param time 时间(秒) * @return true成功 false失败 */ public boolean hmset(String key, Map<String, Object> map, long time) { try { redisTemplate.opsForHash().putAll(key, map); if (time > 0) { expire(key, time); } return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 向一张hash表中放入数据,如果不存在将创建 * @param key 键 * @param item 项 * @param value 值 * @return true 成功 false失败 */ public boolean hset(String key, String item, Object value) { try { redisTemplate.opsForHash().put(key, item, value); return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 向一张hash表中放入数据,如果不存在将创建 * @param key 键 * @param item 项 * @param value 值 * @param time 时间(秒) 注意:如果已存在的hash表有时间,这里将会替换原有的时间 * @return true 成功 false失败 */ public boolean hset(String key, String item, Object value, long time) { try { redisTemplate.opsForHash().put(key, item, value); if (time > 0) { expire(key, time); } return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 删除hash表中的值 * @param key 键 不能为null * @param item 项 可以使多个 不能为null */ public void hdel(String key, Object... item) { redisTemplate.opsForHash().delete(key, item); } /** * 删除hash表中的值 * @param key 键 不能为null * @param items 项 可以使多个 不能为null */ public void hdel(String key, Collection items) { redisTemplate.opsForHash().delete(key, items.toArray()); } /** * 判断hash表中是否有该项的值 * @param key 键 不能为null * @param item 项 不能为null * @return true 存在 false不存在 */ public boolean hHasKey(String key, String item) { return redisTemplate.opsForHash().hasKey(key, item); } /** * hash递增 如果不存在,就会创建一个 并把新增后的值返回 * @param key 键 * @param item 项 * @param delta 要增加几(大于0) * @return */ public double hincr(String key, String item, double delta) { if (delta < 0) { throw new RuntimeException("递增因子必须大于0"); } return redisTemplate.opsForHash().increment(key, item, delta); } /** * hash递减 * @param key 键 * @param item 项 * @param delta 要减少记(小于0) * @return */ public double hdecr(String key, String item, double delta) { if (delta < 0) { throw new RuntimeException("递减因子必须大于0"); } return redisTemplate.opsForHash().increment(key, item, -delta); } // ============================set============================= /** * 根据key获取Set中的所有值 * @param key 键 * @return */ public Set<Object> sGet(String key) { try { return redisTemplate.opsForSet().members(key); } catch (Exception e) { e.printStackTrace(); return null; } } /** * 根据value从一个set中查询,是否存在 * @param key 键 * @param value 值 * @return true 存在 false不存在 */ public boolean sHasKey(String key, Object value) { try { return redisTemplate.opsForSet().isMember(key, value); } catch (Exception e) { e.printStackTrace(); return false; } } /** * 将数据放入set缓存 * @param key 键 * @param values 值 可以是多个 * @return 成功个数 */ public long sSet(String key, Object... values) { try { return redisTemplate.opsForSet().add(key, values); } catch (Exception e) { e.printStackTrace(); return 0; } } /** * 将数据放入set缓存 * @param key 键 * @param values 值 可以是多个 * @return 成功个数 */ public long sSet(String key, Collection values) { try { return redisTemplate.opsForSet().add(key, values.toArray()); } catch (Exception e) { e.printStackTrace(); return 0; } } /** * 将set数据放入缓存 * @param key 键 * @param time 时间(秒) * @param values 值 可以是多个 * @return 成功个数 */ public long sSetAndTime(String key, long time, Object... values) { try { Long count = redisTemplate.opsForSet().add(key, values); if (time > 0) expire(key, time); return count; } catch (Exception e) { e.printStackTrace(); return 0; } } /** * 获取set缓存的长度 * @param key 键 * @return */ public long sGetSetSize(String key) { try { return redisTemplate.opsForSet().size(key); } catch (Exception e) { e.printStackTrace(); return 0; } } /** * 移除值为value的 * @param key 键 * @param values 值 可以是多个 * @return 移除的个数 */ public long setRemove(String key, Object... values) { try { Long count = redisTemplate.opsForSet().remove(key, values); return count; } catch (Exception e) { e.printStackTrace(); return 0; } } // ===============================list================================= /** * 获取list缓存的内容 * @param key 键 * @param start 开始 * @param end 结束 0 到 -1代表所有值 * @return */ public List<Object> lGet(String key, long start, long end) { try { return redisTemplate.opsForList().range(key, start, end); } catch (Exception e) { e.printStackTrace(); return null; } } /** * 获取list缓存的长度 * @param key 键 * @return */ public long lGetListSize(String key) { try { return redisTemplate.opsForList().size(key); } catch (Exception e) { e.printStackTrace(); return 0; } } /** * 通过索引 获取list中的值 * @param key 键 * @param index 索引 index>=0时, 0 表头,1 第二个元素,依次类推;index<0时,-1,表尾,-2倒数第二个元素,依次类推 * @return */ public Object lGetIndex(String key, long index) { try { return redisTemplate.opsForList().index(key, index); } catch (Exception e) { e.printStackTrace(); return null; } } /** * 将list放入缓存 * @param key 键 * @param value 值 * @return */ public boolean lSet(String key, Object value) { try { redisTemplate.opsForList().rightPush(key, value); return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 将list放入缓存 * @param key 键 * @param value 值 * @param time 时间(秒) * @return */ public boolean lSet(String key, Object value, long time) { try { redisTemplate.opsForList().rightPush(key, value); if (time > 0) expire(key, time); return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 将list放入缓存 * @param key 键 * @param value 值 * @return */ public boolean lSet(String key, List<Object> value) { try { redisTemplate.opsForList().rightPushAll(key, value); return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 将list放入缓存 * * @param key 键 * @param value 值 * @param time 时间(秒) * @return */ public boolean lSet(String key, List<Object> value, long time) { try { redisTemplate.opsForList().rightPushAll(key, value); if (time > 0) expire(key, time); return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 根据索引修改list中的某条数据 * @param key 键 * @param index 索引 * @param value 值 * @return */ public boolean lUpdateIndex(String key, long index, Object value) { try { redisTemplate.opsForList().set(key, index, value); return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 移除N个值为value * @param key 键 * @param count 移除多少个 * @param value 值 * @return 移除的个数 */ public long lRemove(String key, long count, Object value) { try { Long remove = redisTemplate.opsForList().remove(key, count, value); return remove; } catch (Exception e) { e.printStackTrace(); return 0; } } }
Application
@SpringBootApplication @MapperScan("com.wlient.springboot_mq_redis.dao") @EnableCaching public class SpringbootMqRedisApplication { public static void main(String[] args) { SpringApplication.run(SpringbootMqRedisApplication.class, args); } }
주로 @EnableCaching 주석을 추가하세요. 캐싱을 활성화하는 두 가지 방법은 다음과 같습니다.
방법 1: RedisTemplate을 캡슐화하는 RedisService를 직접 사용하여 캐싱 작업 수행
컨트롤러 계층
@Autowired RedisService redisService; @GetMapping("selectOne2") public ServiceResult<User> selectOne2(Integer id) { User user = (User) redisService.get("selectOne2::"+id); if (user == null){ user = userService.queryById2(id); redisService.set("selectOne2::"+id,user); } System.out.println(user); return ServiceResult.ok(user); }
방법 2: 주석 사용
서비스 계층에서 작업@Service("userService") @CacheConfig(cacheNames = "departmentsService") public class UserServiceImpl implements UserService { @Resource private UserDao userDao; /** * 通过ID查询单条数据 * * @param id 主键 * @return 实例对象 */ @Override @Cacheable(key = "#root.methodName+':'+#id") public User queryById(Integer id) { User user = this.userDao.selectById(id); return user; } }
주석을 사용하는 것이 더 편리합니다. .하지만 충분히 유연하지 않습니다. 캡슐화 클래스를 사용하면 코드 양이 늘어나지만 대부분의 요구 사항을 충족할 수 있습니다.
구성 파일에 대한 자세한 설명
SpringCacheConfig: 스프링 캐시 구성
이 두 파일은 필수입니다. .SpringCacheConfig 구성 파일이 없으면 redis에 저장된 데이터가 왜곡됩니다
CacheConfig: 필요하지 않으며 필요에 따라 채택된 구성만 사용 가능합니다(프로젝트에서 복사됨)
위 내용은 SpringBoot가 Redis를 통합하여 캐싱 메커니즘을 활성화하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Redis의 데이터 모델 및 구조에는 5 가지 주요 유형이 포함됩니다. 1. 문자열 : 텍스트 또는 이진 데이터를 저장하는 데 사용되며 원자 연산을 지원합니다. 2. 목록 : 정렬 된 요소 컬렉션, 대기열 및 스택에 적합합니다. 세트 : 세트 작동을 지원하는 비 순차 고유 요소 세트. 4. 순서 세트 (SortedSet) : 순위에 적합한 점수가있는 고유 한 요소 세트. 5. 해시 테이블 (HASH) : 객체를 저장하는 데 적합한 키 값 쌍 모음.

Redis의 데이터베이스 방법에는 메모리 인 데이터베이스 및 키 값 저장소가 포함됩니다. 1) Redis는 메모리에 데이터를 저장하고 빠르게 읽고 쓰고 있습니다. 2) 키 값 쌍을 사용하여 데이터를 저장하고 캐시 및 NOSQL 데이터베이스에 적합한 목록, 컬렉션, 해시 테이블 및 주문 컬렉션과 같은 복잡한 데이터 구조를 지원합니다.

Redis는 빠른 성능, 풍부한 데이터 구조, 고 가용성 및 확장 성, 지속성 기능 및 광범위한 생태계 지원을 제공하기 때문에 강력한 데이터베이스 솔루션입니다. 1) 매우 빠른 성능 : Redis의 데이터는 메모리에 저장되며 동시성이 높고 대기 시간이 낮은 응용 프로그램에 적합한 빠른 읽기 및 쓰기 속도를 가지고 있습니다. 2) 풍부한 데이터 구조 : 다양한 시나리오에 적합한 목록, 컬렉션 등과 같은 여러 데이터 유형을 지원합니다. 3) 고 가용성 및 확장 성 : 마스터 슬레이브 복제 및 클러스터 모드를 지원하여 고 가용성 및 수평 확장 성을 달성합니다. 4) 지속성 및 데이터 보안 : 데이터 지속성은 RDB 및 AOF를 통해 달성되어 데이터 무결성 및 신뢰성을 보장합니다. 5) 광범위한 생태계 및 지역 사회 지원 : 거대한 생태계와 활동적인 커뮤니티,

Redis의 주요 기능에는 속도, 유연성 및 풍부한 데이터 구조 지원이 포함됩니다. 1) 속도 : Redis는 메모리 내 데이터베이스이며, 읽기 및 쓰기 작업은 거의 순간적이며 캐시 및 세션 관리에 적합합니다. 2) 유연성 : 복잡한 데이터 처리에 적합한 문자열, 목록, 컬렉션 등과 같은 여러 데이터 구조를 지원합니다. 3) 데이터 구조 지원 : 다양한 비즈니스 요구에 적합한 문자열, 목록, 컬렉션, 해시 테이블 등을 제공합니다.

Redis의 핵심 기능은 고성능 인 메모리 데이터 저장 및 처리 시스템입니다. 1) 고속 데이터 액세스 : Redis는 메모리에 데이터를 저장하고 마이크로 초 수준 읽기 및 쓰기 속도를 제공합니다. 2) 풍부한 데이터 구조 : 문자열, 목록, 컬렉션 등을 지원하며 다양한 응용 프로그램 시나리오에 적응합니다. 3) 지속성 : RDB 및 AOF를 통해 디스크에 데이터를 지속하십시오. 4) 구독 게시 : 메시지 대기열 또는 실시간 통신 시스템에서 사용할 수 있습니다.

Redis는 다음을 포함하여 다양한 데이터 구조를 지원합니다. 1. String, 단일 값 데이터 저장에 적합합니다. 2. 큐 및 스택에 적합한 목록; 3. 비면성 데이터 저장에 사용되는 세트; 4. 순서, 순위 목록 및 우선 순위 대기열에 적합한 순서 세트; 5. 해시 테이블, 객체 또는 구조화 된 데이터를 저장하는 데 적합합니다.

Redis Counter는 Redis Key-Value Pair 스토리지를 사용하여 다음 단계를 포함하여 계산 작업을 구현하는 메커니즘입니다. 카운터 키 생성, 카운트 증가, 카운트 감소, 카운트 재설정 및 카운트 얻기. Redis 카운터의 장점에는 빠른 속도, 높은 동시성, 내구성 및 단순성 및 사용 편의성이 포함됩니다. 사용자 액세스 계산, 실시간 메트릭 추적, 게임 점수 및 순위 및 주문 처리 계산과 같은 시나리오에서 사용할 수 있습니다.

Redis Command Line 도구 (Redis-Cli)를 사용하여 다음 단계를 통해 Redis를 관리하고 작동하십시오. 서버에 연결하고 주소와 포트를 지정하십시오. 명령 이름과 매개 변수를 사용하여 서버에 명령을 보냅니다. 도움말 명령을 사용하여 특정 명령에 대한 도움말 정보를 봅니다. 종금 명령을 사용하여 명령 줄 도구를 종료하십시오.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.
